Skip to main content
Log in

Generation and transformation of second-order nonlinearity in catfish retina

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A large part of the response from catfish retinal neurons evoked by a white-noise modulated light stimulus is reconstructed by the linear and the second-order nonlinear components, which shows that the first- and second-order kernels represent the major response characteristics. In catfish retina, amacrine cells are classified as type-C and type-N cells. Type-C cells produce a stable and stereotyped second-order kernel that can be reproduced by squaring an underdamped first-order kernel. This is a linear filter followed by a static nonlinearity and is modeled by a cascade of the Wiener structure. A second-order kernel from the other class of amacrine cells, type-N cells, is reproduced by a simple linear filtering of type-C cell response. This is a static non-linearity sandwiched between two linear filters and is modelled by a cascade of the Korenberg structure. These findings may greatly simplify future attempts to reconstruct retinal circuitry and may give some insight into the process of complex signal processing in the inner part of the vertebrate retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chappell, R.L.; Naka, K.-I.; Sakuranaga, M. Dynamics of turtle horizontal cell response. J. Gen. Physiol. 86:423–453; 1985.

    Article  CAS  PubMed  Google Scholar 

  2. Hosokawa, Y.; Naka, K.-I. Spontaneous membrane fluctuation in catfish type-N cells. Vision Res. 25:539–542; 1985.

    Article  CAS  PubMed  Google Scholar 

  3. Kaneko, A. Physiological and morphological identification of horizontal, bipolar, and amacrine cells in goldfish retina. J. Physiol. London 207:623–633; 1970.

    CAS  PubMed  Google Scholar 

  4. Kaneko, A. Receptive field organization of bipolar and amacrine cells in the goldfish retina. J. Physiol. London 235:133–153; 1973.

    CAS  PubMed  Google Scholar 

  5. Korenberg, M.J. Croscorrelation analysis of neural cascades. Proc. Ann. Rocky Mountain Bioeng. Symp. 1:47–52; 1973.

    Google Scholar 

  6. Korenberg, M.J.; Hunter, I.W. The identification of nonlinear biological systems: LNL cascade models. Biol. Cybern. 55:125–134; 1986.

    CAS  PubMed  Google Scholar 

  7. Marmarelis, P.Z.; Marmarelis, V.Z. Analysis of physiological systems: The white-noise approach, New York: Plenum Press; 1978.

    Google Scholar 

  8. Marmarelis, P.Z.; Naka, K.-I. White-noise analysis of a neuron chain: An application of the Wiener theory. Science 175:1276–1278; 1972.

    CAS  PubMed  Google Scholar 

  9. Matsumoto, N.; Naka, K.-I. Identification of intracellular responses in the frog retina. Brain Res. 42:59–71; 1972.

    Article  CAS  PubMed  Google Scholar 

  10. Naka, K.-I.; Itoh, M.-I.; Chappell, R.L. Dynamics of turtle cones. J. Gen. Physiol. 89:321–337; 1987.

    Article  CAS  PubMed  Google Scholar 

  11. Naka, K.-I.; Marmarelis, P.Z.; Chan, R.Y. Morphological and functional identification of catfish retinal neurons. III. Functional identification. J. Neurophysiol. 38:92–131; 1975.

    CAS  PubMed  Google Scholar 

  12. Naka, K.-I.; Rushton, W.A.H. The organization and spread of S-potentials in fish (cyprinidae). J. Physiol. London 192:437–461; 1967.

    CAS  PubMed  Google Scholar 

  13. Rushton, W.A.H. The Ferrier lecture, 1962. Visual adaptation. Proc. Royal Soc. London B. Biol. Sci. 162:20–46; 1965.

    CAS  Google Scholar 

  14. Sakai, H.M.; Naka, K.-I. Signal transmission in the catfish retina. IV. Transmission to ganglion cells. J. Neurophysiol. 58:1307–1328; 1987.

    CAS  PubMed  Google Scholar 

  15. Sakuranaga, M.; Ando, Y.-I.; Naka, K.-I. Dynamics of ganglion-cell response in the catfish and frog retinas. J. Gen. Physiol. 90:229–259; 1987.

    Article  CAS  PubMed  Google Scholar 

  16. Sakuranaga, M.; Naka, K.-I. Signal transmission in the catfish retina. I. Transmission in the outer retina. J. Neurophysiol. 53:373–389; 1985.

    CAS  PubMed  Google Scholar 

  17. Sakuranaga, M.; Naka, K.-I. Signal transmission in the catfish retina. II. Transmission to type N cell. J. Neurophysiol. 53:390–410; 1985.

    CAS  PubMed  Google Scholar 

  18. Sakuranaga, M.; Naka, K.-I. Signal transmission in the catfish retina. III. Transmission to type C cell. J. Neurophysiol. 53:411–428; 1985.

    CAS  PubMed  Google Scholar 

  19. Schetzen, M. The Volterra and Wiener Theory of Nonlinear Systems. New York: John Wiley & Sons, 1980.

    Google Scholar 

  20. Tranchina, D.; Gordon, J.; Shapley, R.M.; Toyoda, J.-I., Linear information processing in the retina: A study of horizontal cell responses. Proc. Natl. Acad. Sci. USA 78:6540–6542; 1982.

    Google Scholar 

  21. Victor, J.D.; Shapley, R.M. The nonlinear pathway of Y ganglion cells in the cat retina. J. Gen. Physiol. 74:671–689; 1979.

    CAS  PubMed  Google Scholar 

  22. Werblin, F.S.; Dowling, J.E. Organization of retina of the mudpuppy,Necturus maculosus. II. Intracellular recording. J. Neurophysiol. 32:339–355; 1969.

    CAS  PubMed  Google Scholar 

  23. Wiener, N. Nonlinear problems in random theory. New York: Wiley; 1958.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naka, KI., Sakai, H.M. & Ishii, N. Generation and transformation of second-order nonlinearity in catfish retina. Ann Biomed Eng 16, 53–64 (1988). https://doi.org/10.1007/BF02367380

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02367380

Keywords

Navigation