Skip to main content
Log in

The pattern of coronary arteriolar bifurcations and the uniform shear hypothesis

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

By minimizing the cost function, which is the sum of the friction power loss and the metabolic energy proportional to blood volume, Murray derived an optimal condition for a vascular bifurcation. Murray's law states that the cube of the radius of a parent vessel equals the sum of the cubes of the radii of the daughters. We tested Murray's law against our data of pig's maximally vasodilated coronary arteriolar blood vessels at bifurcation points in control and hypertensive ventricles. Data were obtained from 7 farm pigs, 4 normal controls and 3 with right ventricular hypertrophy induced by stenosis of a pulmonary artery. Data on coronary arteriolar bifurcations were obtained from histological specimens by optical sectioning. The experimental results show excellent agreement with Murray's law in control and hypertensive hearts. Theoretically, we show that Murray's law can be derived alternatively as a consequence of the uniform vessel-wall shear strain rate hypothesis and a fluid mechanics equation based on conservation of mass and momentum. Conversely, the fluid mechanical equation, together with Murray's law, established as an empirical equation of actual measurements implies the uniformity of the shear strain rate of the blood at the vessel wall throughout the arterioles. The validity of these statements is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fung, Y. C.Biodynamics: Circulation. Springer Verlag: New York, 1980.

    Google Scholar 

  2. Fung, Y. C., and S. Q. Liu. Elementary mechanics of the endothelium of blood vessels.J. Biomech. Eng. 115:1–12, 1993.

    CAS  PubMed  Google Scholar 

  3. Giddens, D. P., C. K. Zarins, and S. Glagov. Response of arteries to near-wall fluid dynamic behavior.Appl. Mech. Rev. 43:S98-S102, 1990.

    Google Scholar 

  4. Hooper, G. Diameters of bronchi at asymmetrical divisions.Respir. Physiol. 31:291–294, 1977.

    Article  CAS  PubMed  Google Scholar 

  5. House, S. D., and H. H. Lipowsky. Microvascular hematocrit and red cell flux in rat cremaster muscle.Am. J. Physiol. 252 (Heart Circ. Physiol. 21):H211-H222, 1987.

    CAS  PubMed  Google Scholar 

  6. Hutchins, G. M., M. M. Miner, and J. K. Boitnott. Vessel caliber and branch angle of human coronary artery branch points.Circ. Res. 38:572–576, 1976.

    CAS  PubMed  Google Scholar 

  7. Kamiya, A., and T. Togawa. Optimal branching structure of the vascular tree.Bull. Math. Biophys. 34:431–438, 1972.

    CAS  PubMed  Google Scholar 

  8. Kamiya, A., and T. Togawa. Adaptive regulation of wall shear stress to flow change in the canine carotid artery.Am. J. Physiol. 239 (Heart Circ. Physiol.) 8:H14-H21, 1980.

    CAS  PubMed  Google Scholar 

  9. Kamiya, A., R. Bukhari, and T. Togawa. Adaptive regulation of wall shear stress optimizing vascular tree function.Bull. Math. Biol. 46:127–137, 1984.

    Article  CAS  PubMed  Google Scholar 

  10. Kassab, G. S., and Y.-C. Fung. Topology and dimensions of pig coronary capillary network.Am. J. Physiol. 267 (Heart Circ. Physiol. 36):H319-H325, 1994.

    CAS  PubMed  Google Scholar 

  11. Kassab, G. S., C. A. Rider, N. J. Tang, and Y.-C. Fung. Morphometry of pig coronary arterial trees.Am. J. Physiol. 265 (Heart Circ. Physiol. 34):H350-H365, 1993.

    CAS  PubMed  Google Scholar 

  12. Kassab, G. S., Daniel H. Lin, and Y. C. Fung. Morphometry of pig coronary venous system.Am. J. Physiol. 267 (Heart Circ. Physiol. 36):H2100-H2113, 1994.

    CAS  PubMed  Google Scholar 

  13. Kassab, G. S., K. Imoto, F. C. White, C. A. Rider, Y.-C. Fung, and C. M. Bloor. Coronary arterial tree remodeling in right ventricular hypertrophy.Am. J. Physiol. 265 (Heart Circ. Physiol. 34):H366-H375, 1993.

    CAS  PubMed  Google Scholar 

  14. Liebow, A. A. Situations which lead to changes in vascular patterns. In:Handbook of Physiology, Section 2: Circulation, Vol. 2. Washington, D.C.: American Physiological Society, pp. 1251–1276, 1963.

    Google Scholar 

  15. Lipowsky, H. H. Rheological and topographical factors affecting shear stress in the microcirculation.Adv. Bioeng. BED 26:385–388, ASME, 1993.

    Google Scholar 

  16. Mayrovitz, H. N., and J. Roy. Microvascular blood flow: evidence indicating a cubic dependence on arteriolar diameter.Am. J. Physiol. 245 (Heart Circ. Physiol. 14):H1031-H1038, 1983.

    CAS  PubMed  Google Scholar 

  17. Murray, C. D. The physiological principle of minimum work. I. The vascular system and the cost of blood volume.Proc. Nat. Acad. Sci. U.S.A. 12:207–214, 1926.

    Google Scholar 

  18. Murray, C. D. The physiological principle of minimum work applied to the angle of branching of arteries.J. Gen. Physiol. 9:835–841, 1926.

    Google Scholar 

  19. Oka, S.Biorheology. Syokabo, Tokyo (in Japanese), 1974.

  20. Oka, S.Biorheology. Syokabo, Tokyo (in Japanese), 1984.

  21. Rodbard, S. Vascular caliber.Cardiology 60:4–49, 1975.

    CAS  PubMed  Google Scholar 

  22. Rosen, R.Optimality Principles in Biology. London: Butterworth, 1967.

    Google Scholar 

  23. Suwa, N., N. Takashi, H. Fukasawa, and Y. Sasaki. Estimation of intravascular blood pressure gradient by mathematical analysis of arterial casts.Tohoku J. Exp. Med. 79: 168–198, 1973.

    Google Scholar 

  24. Thoma, R.Untersuchungen uber die Histogenese und Histomechanik des Gefassystemes. Stuttgart: Enke, 1983.

    Google Scholar 

  25. Tomanek, R. J., P. J. Palmer, G. L. Peiffer, K. L. Schreiber, C. L. Eastham, and M. L. Marcus. Morphometry of canine coronary arteries, arterioles, and capillaries during hypertension and left ventricular hypertrophy.Circ. Res. 58:38–46, 1986.

    CAS  PubMed  Google Scholar 

  26. Yamaguchi, T., K. Hoshiai, H. Okino, A. Sakurai, S. Hanai, M. Masuda, and K. Fujiwara. On shear stress acting on the endothelium. Presented at 1993 Bioengineering Conference, Bioeng. Div. Vol. 24, ASME, p. 167.

  27. Zamir, M. The role of shear forces in arterial branching.J. Gen. Biol. 67:213–222, 1976.

    CAS  Google Scholar 

  28. Zamir, M. Shear forces and blood vessel radii in the cardiovascular system.J. Gen. Physiol. 69:449–461, 1977.

    CAS  PubMed  Google Scholar 

  29. Zamir, M., J. A. Medeiros, and T. K. Cunningham. Arterial bifurcations in the human retina.J. Gen. Physiol. 74: 537–548, 1979.

    Article  CAS  PubMed  Google Scholar 

  30. Zamir, M., and J. A. Medeiros. Arterial branching in Man and Monkey.J. Gen. Physiol. 79:353–360, 1982.

    Article  CAS  PubMed  Google Scholar 

  31. Zamir, M., and N. Brown. Arterial branching in various parts of the cardiovascular system.Am. J. Anatomy 163: 295–307, 1982.

    Article  CAS  Google Scholar 

  32. Zamir, M., S. Phipps, B. L. Langille, and T. H. Wonnacott. Branching characteristics of coronary arteries in rats.Can. J. Physiol. Pharmacol. 62:1453–1459, 1984.

    CAS  PubMed  Google Scholar 

  33. Zamir, M., and H. Chee. Branching characteristics of human coronary arteries.Can. J. Physiol. Pharmacol. 64: 661–668, 1986.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kassab, G.S., Fung, YC.B. The pattern of coronary arteriolar bifurcations and the uniform shear hypothesis. Ann Biomed Eng 23, 13–20 (1995). https://doi.org/10.1007/BF02368296

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368296

Keywords

Navigation