Skip to main content
Log in

Electrochemical behavior of hydrated molybdenum oxides in rechargeable lithium batteries

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Oxide-hydrates of molybdenum (OHM) are investigated as 3-volt cathode materials for rechargeable lithium batteries. These materials with different water content showed a much better performance than that of MoO3 as cathode of the rechargeable lithium battery. We report the electrochemical characteristics of Li//OHM batteries using the oxides and oxide-hydrates of molybdenum which were synthesized from molybdic acid. The oxide has a corrugated layered structure consisting of corner-shared MoO6 octahedra. This structure provides electronic conductivity within basal layer and high lithium ion mobility between layers. The mechanism of dehydration and structural rearrangement of molybdic acid during heat treatment were studied by thermal analysis, x-ray diffraction, and Raman spectroscopy. Thermal analysis indicates a two-step dehydration and formation of orthorhombic α-MoO3 and monoclinic ß-MoO3. Discharge profiles and kinetics are dependent on the amount of “structural water” into the host lattice. The electroinsertion of Li ions occurs mainly in two steps in the potential range between 3.0 and 1.5 V (compositional range 0.0≤x(Li)≤1.5).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

6. References

  1. C. Julien and G.A. Nazri, Solid State Batteries, Materials Design and Optimization, Kluwer, Boston, 1994.

    Google Scholar 

  2. M.S. Whittingham, Prog. Solid State Chem.12, 41 (1978).

    Article  CAS  Google Scholar 

  3. J.O. Besenhard and R. Schöllhorn, J. Power Sources1, 267 (1976/77).

    Google Scholar 

  4. P. Cignini, M. Icovi, S. Panero, G. Pistoia and C. Temporoni, J. Electroanal, Chem.102, 333 (1979).

    Article  CAS  Google Scholar 

  5. M. Icovi, S. Panero, A. D'Agate, G. Pistoia, and C. Temporoni, J. Electroanal. Chem.102, 343 (1979).

    Article  CAS  Google Scholar 

  6. P.A. Christian, J.N. Carides, F.J. DiSalvo and J.V. Waszczak, J. Electrochem. Soc.127, 2315 (1980).

    CAS  Google Scholar 

  7. J.O. Besenhard, J. Heydecke, E. Wudy, H.P. Fritz and W. Foag, Solid State Ionics8, 61 (1983).

    Article  CAS  Google Scholar 

  8. G. Pistoia, C. Temporoni, P. Cignini, M. Icovi and S. Panero, J. Electroanal. Chem.108, 981 (1980).

    Google Scholar 

  9. M. Pasquali, G. Pistoia and F. Rodante, Solid State Ionics6, 319 (1982).

    Article  CAS  Google Scholar 

  10. L. Kihlborg, Arkiv Kemi21, 357 (1963).

    CAS  Google Scholar 

  11. E.M. McCarron, J. Chem Soc. Chem. Commun. 336 (1986).

  12. S. Crouch-Baker and P.G. Dickens, Solid State Ionics32–33, 219 (1989).

    Google Scholar 

  13. I.R. Beattie and T.R. Gilson, J. Chem. Soc. (A), 2322 (1969).

  14. J.B. Parise, E.M. McCarron and A.W. Sleight, Mat. Res. Bull.22, 803 (1987).

    Article  CAS  Google Scholar 

  15. B. Krebs, Chem. Commun., 50 (1970).

  16. J.R. Gunter, J. Solid State Chem. Vol.5, 354 (1972).

    Google Scholar 

  17. H.R. Oswald, J.R. Gunter and E. Dubler, J. Solid State Chem.13, 330 (1975).

    Article  CAS  Google Scholar 

  18. R.L. Fellows, M.H. Lloyd, J.F. Knight, and H.L. Yakel, Inorg. Chem.22, 2463 (1983).

    Article  Google Scholar 

  19. G. Guzman, B. Yebka, J. Livage and C. Julien, Solid State Ionics,86–88, 407 (1996).

    Google Scholar 

  20. F. Harb, B. Gerand, G. Nowogrocki and M. Figlarz, Solid State Ionics32–33, 84 (1989).

    Google Scholar 

  21. C. Julien and G.A. Nazri, Solid State Ionics68, 111 (1994).

    CAS  Google Scholar 

  22. C. Julien, B. Yebka and G.A. Nazri, Mater. Sci. Eng. B38, 65 (1996).

    Google Scholar 

  23. W. Weppner and R.A. Huggins, J. Electrochem. Soc.124, 1569 (1977).

    CAS  Google Scholar 

  24. G.A. Nazri and C Julien, Ionics2, 1 (1995).

    Google Scholar 

  25. G.A. Nazri and C Julien, Solid State Ionics53–56, 376 (1992).

    Google Scholar 

  26. F.W. Dampier, J. Electrochem. Soc.121, 656 (1974).

    CAS  Google Scholar 

  27. N. Margalit, J. Electrochem. Soc.121, 1460 (1974).

    CAS  Google Scholar 

  28. N. Kumagai, N. Kumagai and K. Tanno, J. Appl. Electrochem.18, 857 (1988).

    Article  CAS  Google Scholar 

  29. M. Sugawara, Y. Kitada and K. Matsuki, J. Power Sources26, 373 (1989).

    CAS  Google Scholar 

  30. B. Yebka and C. Julien, Ionics2, 196 (1996).

    Article  CAS  Google Scholar 

  31. M. Armand, in: Materials for Advanced Batteries (D.W. Murphy, J. Broadhead and B.C.H. Steele, Eds.), Plenum Press, New York, 1980, p. 145.

    Google Scholar 

  32. W.R. McKinnon and R.R. Hearing, in: Modern Aspects of Electrochemistry (R. White, J.O'M. Bockris and B.E. Conway, Eds.), Plenum, New York, 1983, vol. 15, p. 235.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yebka, B., Julien, C. & Nazri, G.A. Electrochemical behavior of hydrated molybdenum oxides in rechargeable lithium batteries. Ionics 5, 236–243 (1999). https://doi.org/10.1007/BF02375846

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02375846

Keywords

Navigation