Skip to main content
Log in

Studies on bacterial activities in aerobic and anaerobic waste water purification

  • Aquatic Microbiology
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Some aspects of the bacteriology of aerobic and anaerobic waste water purification are discussed in view of current opinions and recent developments in the technology of waste water treatment. Various contributions of scientific workers attached to the Department of Microbiology of the Agricultural University, Wageningen, during the past 65 years are summarized. Besides, present investigations are described and research activities in future indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamse, A. D. 1968a. Formation and final composition of the bacterial flora of a dairy waste activated sludge. — Water Res.2: 665–671.

    Google Scholar 

  • Adamse, A. D. 1968b. Response of dairy waste activated sludge to experimental conditions affecting pH and dissolved oxygen concentration. — Water Res.2: 703–713.

    CAS  Google Scholar 

  • Adamse, A. D. 1968c. Bulking of dairy waste activated sludge. — Water Res.2: 715–722.

    CAS  Google Scholar 

  • Adamse, A. D. 1973. Some bacteriological aspects of dairy waste activated sludge. — Annu. Bull. Int. Dairy Fed., Doc. no. 77, Proc. IDF Symp., May 1973, Kolle-Kolle, Denmark, p. 60–74.

  • Adamse, A. D. 1980. New isolation ofClostridium aceticum (Wieringa). — Antonie van Leeuwenhoek46: 523–531.

    Article  CAS  PubMed  Google Scholar 

  • Adamse, A. D. andVelzeboer, C. T. M. 1982. Features of aClostridium, strain CV-AA1, an obligatory anaerobic bacterium producing acetic acid from methanol. — Antonie van Leeuwenhoek48: 305–313.

    Article  CAS  PubMed  Google Scholar 

  • Ardern, E. andLockett, W. T. 1914. Experiments on the oxidation of sewage without the aid of filters. — J. Soc. Chem. Ind., London33: 1122.

    CAS  Google Scholar 

  • Balch, W. E., Schoberth, S., Tanner, R. S. andWolfe, R. S. 1977.Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria. — Int. J. Syst. Bacteriol.27: 355–361.

    CAS  Google Scholar 

  • Barnard, J. L. 1976. A review of biological phosphorus removal in the activated sludge process. — Water S.A.2 (3): 136–144.

    CAS  Google Scholar 

  • Braun, M. andGottschalk, G. 1982.Acetobacterium wieringae sp. nov., a new species producing acetic acid from molecular hydrogen and carbon dioxide. — Zentralbl. Bakteriol. Mikrobiol. Hyg. Abt. 1: Orig. Reihe C:3: 368–376.

    Google Scholar 

  • Braun, M., Mayer, F. andGottschalk, G. 1981.Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide. — Arch. Microbiol.128: 288–293.

    CAS  PubMed  Google Scholar 

  • Busch, P. L. andStumm, W. 1968. Chemical interactions in the aggregation of bacteria. Bioflocculation in waste treatment. — Environ. Sci. Technol.2: 49–53.

    Article  CAS  Google Scholar 

  • Coolhaas, C. 1927. Bijdrage tot de kennis der dissimilatie van vetzure zouten en koolhydraten door thermophiele bacteriën. — Thesis, Agricultural University, Wageningen.

    Google Scholar 

  • Crabtree, K., Boyle, W., McCoy, E. andRohlich, G. A. 1966. A mechanism of floc formation byZoogloea ramigera. — J. Water Pollut. Control Fed.38: 1968–1980.

    CAS  PubMed  Google Scholar 

  • Deinema, M. H., Habets, L. H. A., Scholten, J., Turkstra, E. andWebers, H. A. A. M. 1980. The accumulation of polyphosphate inAcinetobacter spp. — FEMS Microbiol. Lett.9: 275–279.

    CAS  Google Scholar 

  • Deinema, M. H., Van Loosdrecht, M. andScholten, J. 1984. Some physiological characteristics ofAcinetobacter spp. accumulating large amounts of phosphate. — Water Sci. Technol. (in press).

  • Deinema, M. H. andZevenhuizen, L. P. T. M. 1971. Formation of cellulose fibrils by gram-negative bacteria and their role in bacterial flocculation. — Arch. Mikrobiol.78: 42–57.

    Article  CAS  PubMed  Google Scholar 

  • Dolfing, J. 1985. Microbiological aspects of granular methanogenic sludge. — Thesis, Agricultural University, Wageningen (in preparation).

    Google Scholar 

  • Eikelboom, D. H. 1975. Filamentous organisms observed in activated sludge. — Water Res.9: 365–388.

    Article  Google Scholar 

  • Eikelboom, D. H. 1979. Handleiding voor het microscopisch slib onderzoek. — Rapt A 94, IGTNO, Delft, The Netherlands.

    Google Scholar 

  • Friedman, B. A., Dugan, P. R., Pfister, R. M. andRemsen, C. C. 1968. Fine structure and composition of the zoogloeal matrix surroundingZoogloea ramigera. — J. Bacteriol.96: 2144–2153.

    CAS  PubMed  Google Scholar 

  • Fuhs, G. W. andChen, M. 1975. Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater. — Microb. Ecol.2: 119–138.

    Article  CAS  Google Scholar 

  • Gujer, W. andZehnder, A. J. B. 1983. Conversion processes in anaerobic digestion. — Water Sci. Technol.15: 127–167.

    CAS  Google Scholar 

  • Houwaard, F. 1984. Cellulose- en hemicellulose-afbraak onder omstandigheden van de methaangisting. — PBE-TNO rapport, Apeldoorn (in press).

  • Janssen, J. M. A. 1979. Ecological and kinetic aspects of amylolysis and proteolysis in activated sludge. — Thesis, Agricultural University, Wageningen.

    Google Scholar 

  • Krul, J. M. 1978. Denitrification, activity of bacterial flocs, and growth of a filamentous bacterium in relation with the bulking of activated sludge. — Thesis, Agricultural University, Wageningen.

    Google Scholar 

  • Lettinga, G., Van Velsen, A. F. M., Hobma, S. W., De Zeeuw, W. andKlapwijk, A. 1980. Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. — Biotechnol. Bioeng.22: 699–734.

    Article  CAS  Google Scholar 

  • Levin, G. V. andShapiro, J. 1965. Metabolic uptake of phosphorus by wastewater organisms. — J. Water Pollut. Control Fed.37: 800–821.

    CAS  Google Scholar 

  • McCarty, P. L. 1982. One hundred years of anaerobic treatment. p. 3–22.In D. E. Hughes, D. A. Stafford, B. I. Wheatley, W. Baader, G. Lettinga, E. J. Nijns, W. Verstraete and R. L. Wentworth (eds), Anaerobic Digestion 1981. — Elsevier, Amsterdam.

    Google Scholar 

  • McKinney, R. E. 1962. Microbiology for Sanitary Engineers. — McGraw-Hill Book Co., Inc., New York.

    Google Scholar 

  • Mulder, E. G. andDeinema, M. H. 1981. The sheathed bacteria. p. 425–440.In M. P. Starr, H. Stolp, H. G. Trüper, A. Balows and H. G. Schlegel (eds), The Prokaryotes, Vol. 1. — Springer-Verlag, Berlin.

    Google Scholar 

  • Mulder, E. G. andVan Veen, W. L. 1963. Investigations on theSphaerotilus-Leptothrix group. — Antonie van Leeuwenhoek29: 121–153.

    Article  CAS  PubMed  Google Scholar 

  • Mulder, E. G. andVan Veen, W. L. 1965. Anreicherung von Organismen derSphaerotilus-Leptothrix-Gruppe. p. 28–46.In H. G. Schlegel and E. Kröger (eds), Anreicherungskultur und Mutantenauslese, Symposium Göttingen 1964. — Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  • Mulder, E. G. andVan Veen, W. L. 1974. GenusSphaerotilus Kützing 1833, 386. p. 128–129.In R. E. Buchanan and N. E. Gibbons (eds), Bergey’s Manual of Determinative Bacteriology, Eighth edition. — The Williams & Wilkins Co., Baltimore.

    Google Scholar 

  • Pavoni, J. L., Tenney, M. W. andEchelberger Jr, W. F. 1972. Bacterial exocellular polymers and biological flocculation. — J. Water Pollut. Control Fed.44: 414–431.

    CAS  PubMed  Google Scholar 

  • Peter, G. andWuhrmann, K. 1971. Contribution to the problem of bioflocculation in the activated sludge process. p. 1–9.In S. H. Jenkins (ed.), Adv. Water Poll. Res., Proc. 5th Int. Conf. San Francisco, 1970, Vol. 1, sect. II-1. — Pergamon Press, Oxford.

    Google Scholar 

  • Rensink, J. H. 1966. De bestrijding vanSphaerotilus natans in actief slib door chloring. — Water50: 5–8.

    Google Scholar 

  • Rensink, J. H., Donker, H. J. andBrons, H. J. 1979. Biologische fosfaatverwijdering in een actief slib installatie. — H2O12: 296–300.

    Google Scholar 

  • Rensink, J. H. andDonker, H. J. G. W. 1984. Biologische Phosphorelimination aus Abwasser. — Gas Wasserfach, Wasser — Abwasser125: 238–245.

    CAS  Google Scholar 

  • Slijkhuis, H. 1983. The physiology of the filamentous bacteriumMicrothrix parvicella. — Thesis, Agricultural University, Wageningen.

    Google Scholar 

  • Smit, J. 1934. Über die Ursachen des Aufblähens von Belebtschlamm. — Arch. Mikrobiol.5: 550–560.

    Article  Google Scholar 

  • Söhngen, N. L. 1906. Het ontstaan en verdwijnen van waterstof en methaan onder den invloed van het organische leven. — Thesis, Delft Technological University.

  • Switzenbaum, M. S. 1983. Anaerobic treatment of wastewater: recent developments. — ASM News49: 532–536.

    Google Scholar 

  • Van Egeraat, A. W. S. M. 1977. Growth requirements ofRhizobium leguminosarum, strain PRE. — Plant Soil47: 699–702.

    Google Scholar 

  • Van Gils, H. W. 1964. Bacteriology of activated sludge. — Thesis, Agricultural University, Wageningen.

    Google Scholar 

  • Van Veen, W. L. 1973. Bacteriology of activated sludge, in particular the filamentous bacteria. — Antonie van Leeuwenhoek39: 189–205.

    PubMed  Google Scholar 

  • Van Veen, W. L., Mulder, E. G. andDeinema, M. H. 1978. TheSphaerotilus-Leptothrix group of bacteria. — Microbiol. Rev.42: 329–356.

    PubMed  Google Scholar 

  • Van Veen, W. L., Van der Kooij, D., Geuze, E. C. W. A. andVan der Vlies, A. W. 1973. Investigations on the sheathed bacteriumHaliscomenobacter hydrossis gen. n., sp. n., isolated from activated sludge. — Antonie van Leeuwenhoek39: 207–216.

    PubMed  Google Scholar 

  • Verachtert, H., Van den Eynden, E., Poffé, R. andHoutmeyers, J. 1980. Relations between substrate feeding pattern and development of filamentous bacteria in activated sludge processes. Part II: Influence of substrates present in the influent. — Eur. J. Appl. Microbiol. Biotechnol.9: 137–149.

    Article  CAS  Google Scholar 

  • Wieringa, K. T. 1935. In memoriam Prof. Dr. Ir. N. L. Söhngen. — Antonie van Leeuwenhoek2: 1–7.

    Article  Google Scholar 

  • Wieringa, K. T. 1936. Over het verdwijnen van waterstof en koolzuur onder anaërobe voorwaarden. — Antonie van Leeuwenhoek3: 263–273.

    Article  Google Scholar 

  • Wieringa, K. T. 1939/1940. The formation of acetic acid from carbon dioxide and hydrogen by anaerobic spore-forming bacteria. — Antonie van Leeuwenhoek6: 251–262.

    Google Scholar 

  • Zehnder, A. J. B., Ingvorsen, K. andMarti, T. 1982. Microbiology of methane bacteria. p. 45–68.In D. E. Hughes, D. A. Stafford, B. I. Wheatley, W. Baader, G. Lettinga, E. J. Nijns, W. Verstraete and R. L. Wentworth (eds), Anaerobic Digestion 1981. — Elsevier, Amsterdam.

    Google Scholar 

  • Zeikus, J. G. 1983. Metabolism of one-carbon compounds by chemotrophic anaerobes. — Adv. Microbiol. Physiol.24: 215–299.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adamse, A.D., Deinema, M.H. & Zehnder, A.J.B. Studies on bacterial activities in aerobic and anaerobic waste water purification. Antonie van Leeuwenhoek 50, 665–682 (1984). https://doi.org/10.1007/BF02386232

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02386232

Keywords

Navigation