Skip to main content
Log in

Reusable and disposable cups: An energy-based evaluation

  • Research
  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

A group of five different types of reusable and disposable hot drink cups have been analyzed in detail with respect to their overall energy costs during fabrication and use. Electricity generating methods and efficiencies have been found to be key factors in the primary energy consumption for the washing of reusable cups and a less important factor in cup fabrication. In Canada or the United States, over 500 or more use cycles, reusable cups are found to have about the same or slightly more energy consumption, use for use, as moulded polystyrene foam cups used once and then discarded. For the same area paper cups used once and discarded are found to consume less fossil fuel energy per use than any of the other cup types examined. Details of this analysis, which could facilitate the comparative assessment of other scenarios, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • American Paper Institute. 1990. US pulp and paperboard industry's energy use, calendar year 1989, New York; cited by Wells (1991).

  • Becker, F. H. 1980. Energiesparmassnahmen an Ofenanlagen der Keramikindustrie.Keramische Zeitschrift 32(6):310–313.

    Google Scholar 

  • Berry, R. S., and H. Makino. 1974. Energy thrift in packaging and marketing.Technology Review 76(4):32–43.

    Google Scholar 

  • Berry, R. S., T. V. Long, II, and H. Makino. 1975. Energy budgets, An international comparison of polymers and their alternatives.Energy Policy 3(2):144–155.

    Article  Google Scholar 

  • Bevan, G., and A. W. Deakin. 1985. The British glass industry on the world scene. Reducing energy costs.Glass Technology. 26(2):67–70.

    Google Scholar 

  • Blakeslee. ca. 1993. Blakeslee model UC-1 undercounter dishwasher. Scarborough, Ontario. Leaflet, 2 pp., plus operating details from local sales and service representatives.

  • Boustead, I., and G. F. Hancock. 1979. Handbook of industrial energy analysis. John Wiley & Sons, New York, 422 pp.

    Google Scholar 

  • Boyd, D. C., and D. A. Thompson. 1980. Glass. Pages 807–876in Kirk-Othmer Encyclopedia of Chemical Technology, 3rd edition, vol 11. John Wiley & Sons, New York.

    Google Scholar 

  • Chum, H. L., and A. J. Powers. 1992. Opportunities for the cost effective production of biobased materials, Pages 28–41in R. M. Rowell and T. P. Schultz (eds.), Emerging technologies for materials and chemicals from biomass, ACS Symposium Series No. 476, American Chemical Society, Washington, DC.

    Google Scholar 

  • Energy Efficiency Office. 1990. Best practice program, Energy consumption guide no. 8, The firing of ceramic tableware, Harwell Laboratory, Abingdon, Oxfordshire, UK, November, pp. 4, 8.

    Google Scholar 

  • Environment Canada. 1984. Plastics in the waste stream: The need for and benefits of recycling. Environment Canada, Environment Protection Service—Ontario Region, Toronto, January, p. 20.

    Google Scholar 

  • Fenton, R. 1992. The Winnipeg packaging project: Report No. 2. Comparison of coffee cups. The University of Winnipeg, Winnipeg, Manitoba, September, 20 pp.

    Google Scholar 

  • Gaines, L. L. 1981. Energy and materials use in the production and recycling of consumer goods packaging. Argonne National Laboratories, Argonne, Illinois, Report ANL/CNSV-TM-58, 28 pp.

    Google Scholar 

  • Harper, T. J., D. M. Jones, H. J. Highton, and J. J. Shea. 1982. The economics and practicality of a change to coal as an energy source for glassmaking.Glass Technology 23(1):44–51.

    CAS  Google Scholar 

  • Heather, R. P. 1982a. Energy conservation and cost reduction opportunities and potential for the glass container industry.Glass Technology 23(2):72–77.

    Google Scholar 

  • Heather, R. P. 1982b. Glass container manufacturing technology developed to provide cost reduction and energy conservation.J. Non-Crystalline Solids 52:605–617.

    Article  Google Scholar 

  • Hobart Canada. ca. 1993a. Hobart WM-5 series dishwashers. North York, Ontario. Leaflet, 4 pp., plus operating details from local sales and service representatives.

  • Hobart Canada. ca. 1993b. Hobart AM-14 and AM-14C dishwashers. North York, Ontario. Leaflet, 6 pp. plus operating details from local sales and service representatives.

  • Hocking, M. B. 1991a. Paper versus polystyrene: A complex choice.Science 251:504–505.

    Google Scholar 

  • Hocking, M. B. 1991b. Relative merits of polystyrene foam and paper in hot drink cups: Implications for packaging.Environmental Management 15:731–747.

    Google Scholar 

  • Hocking, M. B. 1991c. Assessing the environmental impact of various packaging materials: some case studies. Pages 137–156in Proceedings, first international conference on packaging. 11–12 July, University of Auckland, Auckland, New Zealand, 198 pp.

    Google Scholar 

  • Hocking, M. B. 1991d. Developing an environmental awareness through education. Pages 57–68in Proceedings, fourth annual electric energy forum, Victoria, BC 16–18 April, BC Hydro, Vancouver.

    Google Scholar 

  • Hocking, M. B. 1993. Life cycle inventories: Uncoated paper and moulded polystyrene cups. Pages 10–13in Seminar proceedings, full cost accounting and the environment, 19 March 1993, Victoria, BC, Evaluation, Economics and Laboratory Services Branch, BC Environment, Victoria.

    Google Scholar 

  • Holmes, W. H. 1987. Energy savings in the UK whitewares industry.Industrial Ceramics 7(1):7–13.

    Google Scholar 

  • Hunt, R.G. and Welch, R.O. 1974. Resource and environmental profile analysis of plastics and non-plastics containers (summary). Midwest Research Institute Project No. 3714-D (for The Society of the Plastics Industry Inc., New York) Kansas City, Missouri, and cited by Fenton (1992).

  • Kindler, H., and A. Nikles. 1979. Energiebedarf bei der Herstellung und Verarbeitung von Kunststoffen.Chemie-Ingenieur-Technik 51(11):1125–1127.

    Article  CAS  Google Scholar 

  • Kindler, H., and A. Nikles. 1980. Energieufwand zur Herstellung von Werkstoffen-Berechnungs-grundsätze und Energieäquivalenz werte von Kunststoffen.Kunstoffe 70(12):802–807.

    CAS  Google Scholar 

  • Klingensmith, L. K. 1986. Direct melter performance improved by gas oxygen firing.Glass Industry 67(4):14–18.

    Google Scholar 

  • Kriz, M. 1981. K Otazce objektivniho hodnoceni racionalizace tavicich procesu (Problems of objective evaluation of glassmelting rationalization).Sklar a Keramik 31(11):310–314.

    CAS  Google Scholar 

  • McCubbin, N. 1991. Paper versus polystyrene: Environmental impact.Science 252(5011):1363.

    Google Scholar 

  • Miller, R. K. (ed.). 1983. Energy conservation and utilization in the glass industry. Fairmont Press Inc., Atlanta, Georgia, p. 7.

    Google Scholar 

  • Moyer Diebel. ca. 1993. Moyer Diebel 500 series warewashers. Jordan Station, Ontario. Leaflet, 2 pp. plus operating details from local sales and service representatives.

  • OECD (International Energy Agency, Organisation for Economic Co-operation and Development). 1993. Energy statistics of OECD countries, 1990–1991, Paris, pp. 225–232.

  • Perry, R. H., D. W. Green, and J. O. Maloney (eds.). 1984. Perry's Chemical Engineers' Handbook, 6th ed. McGraw-Hill, Toronto, pp. 9–1, 9–16, 9–18.

    Google Scholar 

  • Rice, P. M. 1987. Pottery analysis: A sourcebook, The University of Chicago Press, Chicago, p. 174.

    Google Scholar 

  • Ringwald, R. M. 1982. Energy and the chemical industry.Chemistry and Industry (London) 281–286.

  • Smith, A. O. 1991. Booster heater sizing for commercial dishwashers, gas/oil. Leaflet B 011.0, A. O. Smith Enterprises Ltd., Stratford, Ontario, May.

    Google Scholar 

  • Thorpe, J. F., and M. A. Whitely. 1947. Thorpe's dictionary of applied chemistry, 4th ed., vol. V, Longman, Green, London, p. 159.

    Google Scholar 

  • Tooley, F. V. (ed.). 1974. The handbook of glass manufacture, vol I. Books for Industry, New York, p. 393.

    Google Scholar 

  • Turton, G., and R. D. Argent. 1988. How to use energy efficiently in container glass furnaces.Glass Industry 69(8):20–26 + 1 p.

    Google Scholar 

  • van Eijk, J., J. W. Nieuwenhuis, C. W. Post, and J. H. de Zeeuw. 1992. Reusable versus disposable. A comparison of the environmental impact of polystyrene, paper/cardboard, and porcelain crockery. Ministry of Housing, Physical Planning and Environment, Zoetermeer, The Netherlands, May, 163 pp.

    Google Scholar 

  • Wells, H. A. 1991. Paper versus polystyrene: Environmental impact.Science 252(5011):1363.

    Google Scholar 

  • World Resources, 1990–1991. A report by the World Resources Institute and the United Nations environment programme, United Nations, 1990. Oxford University Press, Oxford, pp. 207, 209.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hocking, M.B. Reusable and disposable cups: An energy-based evaluation. Environmental Management 18, 889–899 (1994). https://doi.org/10.1007/BF02393618

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02393618

Key words

Navigation