Skip to main content
Log in

Inclusive fitness arguments in genetic models of behaviour

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

My purpose here is to provide a coherent account of inclusive fitness techniques, accessible to a mathematically literate graduate student in evolutionary biology, and to relate these to standard one-locus genetic models. I begin in Sect. 2 with a general formulation of evolutionary stability; in Sect. 3 and Sect. 4 I interpret the basic stability conditions within genetic and inclusive fitness models. In Sect. 5 I extend these concepts to the case of a class-structured population, and in Sect. 6 I illustrate these notions with a sex ratio example. In Sect. 7 I give a proof of the result that under additive gene action and weak selection, an inclusive fitness argument is able to verify an important stability condition (2.5) for one-locus genetic models. Most of these results have been published.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams, P. A., Matsuda, H. and Harada, Y. 1993. Evolutionarily unstable fitness maxima and stable fitness minima of continuous traits. Evol. Ecol.7: 465–487.

    Article  Google Scholar 

  • Bulmer, M. G. 1986. Sex ratio theory in geographically structured populations, Heredity56: 69–73.

    Google Scholar 

  • Charlesworth, B. 1980a. Models of kin selection. In: Evolution of Social Behaviour: Hypotheses and Empirical Tests, (ed. H. Markl), Verlag Chemie, Weinheim.

    Google Scholar 

  • Charlesworth, B. 1980b. Evolution in age-structured populations. Cambridge Studies in Mathematical Biology, Cambridge Univ. Press

  • Charnov, E. L. 1977. An elementary treatment of the genetical theory of kin selection, J. Theor. Biol.66: 541–550

    Article  Google Scholar 

  • Christiansen, F. B. 1991. On conditions for evolutionary stability for a continuously varying character, Amer. Nat.138: 37–50

    Article  Google Scholar 

  • Crow J. F. and Kimura M. 1970. An Introduction to Population Genetics Theory, New York: Harper and Row

    Google Scholar 

  • Eshel, I. 1983. Evolutionary and continuous stability, J. Theor. Biol.103, 99–111

    Article  MathSciNet  Google Scholar 

  • Eshel, I, and Motro, U. 1981. Kin selection and strong evolutionary stability of mutual help, Theor. Pop. Biol.19, 420–433

    Article  MathSciNet  Google Scholar 

  • Forsyth, A. 1981. Sex ratio and parental investment in an ant population. Evolution36: 1252–1253

    Article  Google Scholar 

  • Frank, S. A. 1986. Hierarchical selection theory and sex ratios. I. General solutions for structured populations, Theor. Pop. Biol.29: 312–342

    Article  MATH  Google Scholar 

  • Grafen, A. 1984. Natural, kin and group selection, in Behavioural Ecology, An Evolutionary Approach (J. R. Krebs and N. B. Davies, eds) 62–84. Sinauer

  • Grafen, A. 1985a. A geometric view of relatedness, Oxford Surveys in Evolutionary Biology2: 28–89

    Google Scholar 

  • Grafen, A. 1985b. Hamilton's rule OK, Nature318: 310–311

    Article  Google Scholar 

  • Hamilton, W. D. 1964. The genetical evolution of social behaviour, I and II, J. Theor. Biol.7: 1–52

    Article  Google Scholar 

  • Hamilton, W. D. 1970. Selfish and spiteful behaviour in an evolutionary model, Nature (Lond.)228: 1218–1220

    Article  Google Scholar 

  • Hamilton, W. D. 1972. Altruism and related phenomena, mainly in social insects, Ann. Rev. Ecol. Syst.3: 192–232

    Article  Google Scholar 

  • Hamilton, W. D. 1975. Innate social aptitudes of man: an approach from evolutionary biology. In: Biosocial Anthropology (R. Fox, ed.) pp 133–155. New York: John Wiley and sons

    Google Scholar 

  • Iwasa, Y. 1981. Role of sex ratio in the evolution of eusociality in haplodiploid social insects, J. theor. Biol.93: 125–142

    Article  Google Scholar 

  • Jacquard, A. 1974. The Genetic Structure of Populations (trans. D. and B. Charlesworth) Biomathematics Series 5, Springer, New York

    Google Scholar 

  • Leslie, P. H. 1948. Some further remarks on the use of matrices in population mathematics, Biometrika35: 213–245

    Article  MATH  MathSciNet  Google Scholar 

  • Maynard Smith, J. 1974. The theory of games and the evolution of animal conflicts, J. theor. Biol.47: 209–221

    Article  MathSciNet  Google Scholar 

  • Maynard Smith, J. and Price, G. R., 1973. The logic of animal conflict. Nature246: 15–18

    Article  Google Scholar 

  • Metz, J. A. J., R. M. Nisbet and Geritz, S. A. H. 1992. How should we define ‘fitness’ for general ecological scenarios? TREE7:198–202

    Google Scholar 

  • Michod, R. E. and Hamilton, W. D. 1980. Coefficients, of relatedness in sociobiology, Nature288: 694–697

    Article  Google Scholar 

  • Pamilo, P. and Crozier, R. H. 1982. Measuring genetic relatedness in natural populations: methodology. Theor. Pop. Biol.21: 171–193

    Article  Google Scholar 

  • Price, G. R. 1970. Selection and covariance, Nature227: 520–521

    Article  Google Scholar 

  • Queller, D. C. 1985. Kinship, reciprocity and synergism in the evolution of social behaviour, Nature318: 366–367

    Article  Google Scholar 

  • Seger, J. 1981. Kinship and covariance, J. theor. Biol.91: 191–213

    Article  MathSciNet  Google Scholar 

  • Taylor, P. D. 1981. Sex ratio compensation in ant populations. Evolution35: 1250–1251

    Article  Google Scholar 

  • Taylor, P. D. 1988a. An inclusive fitness model for dispersal of offspring, J. theor. Biol.130: 363–378

    Google Scholar 

  • Taylor, P. D. 1988b. Inclusive fitness models with two sexes. Theor. Pop. Biol.34: 145–168

    Article  MATH  Google Scholar 

  • Taylor, P. D. 1989. Evolutionary stability in one-parameter models under weak selection, Theor. Pop. Biol.36: 125–143

    Article  MATH  Google Scholar 

  • Taylor, P. D. 1990. Allele frequency change in a class-structured population, American Naturalist135: 95–106

    Article  Google Scholar 

  • Taylor, P. D. and Getz, W. M. 1994. An inclusive fitness model for the evolutionary advantage of sib-mating. Evol. Ecol. 8: 61–69

    Article  Google Scholar 

  • Taylor, P. D. and Frank, S. A. 1996. How to make a kin selection model. J. theor. Biol. (in press)

  • van Tienderen, P. H. and De Jong, D. 1986. Sex ratio under the haystack model: polymorphism may occur. J. theor. Biol.122: 69–81

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, P.D. Inclusive fitness arguments in genetic models of behaviour. J. Math. Biology 34, 654–674 (1996). https://doi.org/10.1007/BF02409753

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02409753

Keywords

Navigation