Skip to main content
Log in

Conservation of structure and function of the aflatoxin regulatory geneaflR fromAspergillus nidulans andA. flavus

  • Original Paper
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Under limiting growth conditions,Aspergillus nidulans produces a carcinogenic secondary metabolite related to aflatoxin and called sterigmatocystin (ST). The genes for ST biosynthesis are co-ordinately regulated and are all found within an approximately 60-kilobase segment of DNA. One of the genes within this region is predicted to encode a CX2CX6CX6CX2CX6CX2 zinc binuclear cluster DNA-binding protein that is related to theAspergillus flavus andAspergillus parasiticus aflatoxin regulatory geneaflR. Deletion of theA. nidulans aflR homolog resulted in an inability to induce expression of genes within the ST gene cluster and a loss of ST production. BecauseA. nidulans aflR mRNA accumulates specifically under conditions that favor ST production we expect that activation of ST biosynthetic genes is determined byA. nidulans aflR. In support of this hypothesis, we demonstrated that induced expression of theA. flavus aflR gene inA. nidulans, under conditions that normally suppress ST gene expression, resulted in activation of genes in the ST biosynthetic pathway. This result demonstrates that AflR function is conserved betweenAspergillus spp. and thataflR expression is sufficient to activate genes in the ST pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams TH, Boylan MT, Timberlake WE (1988)brlA is necessary and sufficient to direct conidiophore development inAspergillus nidulans. Cell 54:353–362

    Article  PubMed  CAS  Google Scholar 

  • Adamson RH (1989) Induction of hepatocellular carcinoma in non-human primates by chemical carcinogens. Cancer Detect Prev 14:215–219

    PubMed  CAS  Google Scholar 

  • Aharonowitz Y, Cohen G, Martin JF (1992) Penicillin and cephalosporin biosynthetic genes: structure, organization, regulation, and evolution. Annu Rev Microbiol 46:461–495

    Article  PubMed  CAS  Google Scholar 

  • Aucamp PJ, Holzapfel CW (1970) Polyhydroxyanthraquinones fromAspergillus versicolor, Aspergillus nidulans andBipolaris spp. Their significance in relation to biogenetic theories on Aflatoxin B1. J S Afr Chem Inst 23:40–56

    CAS  Google Scholar 

  • Barnes SE, Dola TP, Bennett JW, Bhatnagar D (1994) Synthesis of sterigmatocystin on a chemically defined medium by species ofAspergillus andChaetomium. Mycopathologia 125:173–178

    Article  PubMed  CAS  Google Scholar 

  • Bennett JW, and Papa KE (1988) The aflatoxigenicAspergillus species. Adv Plant Pathol 6:263–280

    Google Scholar 

  • Bennett JW, Bhatnagar D, Chang PK (1994) The molecular genetics of aflatoxin biosynthesis. In: Powell KA (ed) The genusAspergillus. Plenum Press, New York, pp 51–58

    Google Scholar 

  • Bhatnagar D, Ehrlich KC, Cleveland TE (1992) Oxidation-reduction reactions in biosynthesis of secondary metabolites. In: Bhatnagar D, Lillehoj EB, Arora DK (eds) Handbook of Applied Mycology. Marcel Dekker, New York, pp 255–286

    Google Scholar 

  • Bressac B, Kew M, Wands J, Ozturk M (1991) Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature 350:429–431

    Article  PubMed  CAS  Google Scholar 

  • Brown DW, Yu J-H, Kelkar HS, Fernandes M, Nesbitt TC, Keller NP, Adams TH, Leonard TJ (1996) Twenty-five co-regulated transcripts define the sterigmatocystin gene cluster inAspergillus nidulans. Proc Natl Acad Sci USA 93:1418–1422

    Article  PubMed  CAS  Google Scholar 

  • Burger G, Strauss J, Scazzocchio C, Lang BF (1991)nirA, the pathway-specific regulatory gene of nitrate assimilation inAspergillus nidulans, encodes a putative GAL4-type zinc finger protein and contains four introns in highly conserved regions. Mol Cell Biol 11:5746–5755

    PubMed  CAS  Google Scholar 

  • Chang P-K, Cary JW, Bhatnagar D, Cleveland TE, Bennett JW, Linz JE, Woloshuk CP, Payne GA (1993) Cloning of theAspergillus parasiticus apa-2 gene associated with the regulation of aflatoxin biosynthesis. Appl Environ Microbiol 59:3273–3279

    PubMed  CAS  Google Scholar 

  • Chang P-K, Ehrlich KC, Yu J, Bhatnagar D, cleveland TE (1995) Increased expression ofAspergillus parasiticus aflR, encoding a sequence-specific DNA-binding protein, relieves nitrate inhibition of aflatoxin biosynthesis. Appl Environ Microbiol 61:2372–2377

    PubMed  CAS  Google Scholar 

  • Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81:1991–1995

    Article  PubMed  CAS  Google Scholar 

  • Cole RJ, Cox RH (1981) Handbook of toxic fungal metabolites. Academic Press, New York, pp 67–93

    Google Scholar 

  • Cove DJ (1979) Genetic studies of nitrate assimilation inAspergillus nidulans. Biol Rev 54:291–327

    PubMed  CAS  Google Scholar 

  • Diener UL, Cole RJ, Sanders TH, Payne GA, Lee LS, Klich MA (1987) Epidemiology of aflatoxin formation byAspergillus flavus. Annu Rev Phytopathol 25:249–270

    CAS  Google Scholar 

  • Dutton MF (1988) Enzymes and aflatoxin biosynthesis. Microbiol Rev 52:274–295

    PubMed  CAS  Google Scholar 

  • Fujii K, Kurata H, Odashima S, Hatsuda Y (1976) Tumor induction by a single subcutaneous injection of sterigmatocystin in newborn mice. Cancer Res 36:1615–1618

    PubMed  CAS  Google Scholar 

  • Giniger E, Varnum SM, Ptashne M (1985) Specific DNA-binding of GAL4, a positive regulatory protein of yeast. Cell 40:767–774

    Article  PubMed  CAS  Google Scholar 

  • Herbert RB (1989) Polyketides. In: The biosynthesis of secondary metabolites. Chapman and Hall, London, pp 31–62

    Google Scholar 

  • Jelinek CF, Pohland AE, Wood GE (1989) Worldwide occurrence of mycotoxins in foods and feeds—an update. J Assoc Off Anal Chem 72:223–230

    PubMed  CAS  Google Scholar 

  • Johnstone IL, McCabe PC, Greaves P, Gurr SJ, Cole GE, Brow MAD, Unkles SE, Clutterbuck AJ, Kinghorn JR, Innis MA (1990) Isolation and characterization of thecrnA-niiA-niaD gene cluster for nitrate assimilation inAspergillus nidulans. Gene 90:181–192

    Article  PubMed  CAS  Google Scholar 

  • Käfer E (1977) Meiotic and mitotic recombination inAspergillus and its chromosomal aberrations. Adv Genet 19:33–131

    Article  PubMed  Google Scholar 

  • Keller NP, Cleveland TE, Bhatnagar D (1992) A molecular approach towards understanding aflatoxin production. In: Bhatnagar D, Lillehoj EB, Arora DK (eds). Handbook of Applied Mycology. Marcel Dekker, Inc., New York, pp 287–310

    Google Scholar 

  • Keller NP, Dischinger HCJ, Bhatnagar D, Cleveland TE, Ullah AH (1993) Purification of a 40-kilodalton methyltransferase active in the aflatoxin biosynthetic pathway. Appl Environ Microbiol 59:479–484

    PubMed  CAS  Google Scholar 

  • Keller NP, Kantz NJ, Adams TA (1994)Aspergillus nidulans verA is required for production of the mycotoxin sterigmatocystin. Appl Environ Microbiol 60:1444–1450

    PubMed  CAS  Google Scholar 

  • Keller NP, Brown DW, Butchko RAE, Fernandes M, Kelkar H, Nesbitt C, Segner S, Bhatnagar D, Cleveland TE, Adams TH (1995) A conserved polyketide mycotoxin gene cluster inAspergillus nidulans. In: Richard JL (ed) Molecular approaches to food safety issues involving toxic microorganisms. Alaken Inc., Port Collins, pp 263–277

    Google Scholar 

  • Klich MA, Pitt JI (1988) A laboratory guide to the commonAspergillus species and their teleomorphs. CSIRO Division of Food Processing, North Ryde, Australia

    Google Scholar 

  • McConnell IR, Garner RC (1994) DNA adducts of aflatoxins, sterigmatocystin and other mycotoxins. IARC Scientific Publication No. 125, pp 49–55

  • Payne GA, Nystrom GJ, Bhatnagar D, Cleveland TE, Woloshuk CP (1993) Cloning of theafl-2 gene involved in aflatoxin biosynthesis fromAspergillus flavus. Appl Environ Microbiol 59:156–162

    PubMed  CAS  Google Scholar 

  • Proctor RH, Hohn TM, McCormick SP, Desjardins AE (1995)tri6 encodes an unusual zinc finger protein involved in regulation of trichothecene biosynthesis inFusarium sporotrichioides. Appl Environ Microbiol 61:1923–1930

    PubMed  CAS  Google Scholar 

  • Samson RA (1992) Current taxonomic schemes of the genusAspergillus and its teleomorphs. In: Bennett JW, Klich MA (eds)Aspergillus: biology and industrial applications. Butterworth-Heinemann, Boston, pp 355–390

    Google Scholar 

  • Scott PM, van Walbeek W, Kennedy B, Anyeti D (1972) Mycotoxins and toxigenic fungi in grains and other agriculture. J Agric Food Chem 20:1103–1109

    Article  PubMed  CAS  Google Scholar 

  • Skory CD, Chang P, Cary J, ELJ (1992) Isolation and characterization of a gene fromAspergillus parasiticus associated with the conversion of versicolorin A to sterigmatocystin in aflatoxin biosynthesis. Appl Environ Microbiol 58:3527–3537

    PubMed  CAS  Google Scholar 

  • Stack M, Rodricks JV (1971) Method for analysis and chemical confirmation of sterigmatocystin. J Assoc Off Anal Chem 54:86–90

    PubMed  CAS  Google Scholar 

  • Trail F, Mahanti N, Rarick M, Mehigh R, Liang S-H, Zhou R, Linz JE (1995) Physical and transcriptional map of an aflatoxin gene cluster inAspergillus parasiticus and functional disruption of a gene involved early in the aflatoxin pathway. Appl Environ Microbiol 61:2665–2673

    PubMed  CAS  Google Scholar 

  • Wieser J, Adams TH (1995)flbD encodes a Myb-like DNA-binding protein that regulates initiation ofAspergillus nidulans conidiophore development. Genes Dev 9:491–502

    PubMed  CAS  Google Scholar 

  • Woloshuk CP, Fount KR, Brewer JF, Bhatnagar D, Cleveland TE, and Payne GA (1994) Molecular characterization ofaflR, a regulatory locus for aflatoxin biosynthesis. Appl Environ Microbiol 60:2408–2414

    PubMed  CAS  Google Scholar 

  • Yabe K, Ando Y, Hashimoto J, Hamasaki T (1989) Two distinctO-methyltransferases in aflatoxin biosynthesis. Appl Environ Microbiol 55:2172–2177

    PubMed  CAS  Google Scholar 

  • Yager LN, Kurtz MB, Champe SP (1982) Temperature-shift analysis of conidial development inAspergillus nidulans. Dev Biol 93:92–103

    Article  PubMed  CAS  Google Scholar 

  • Yelton MM, Hamer JE, Timberlake WE (1984) Transformation ofAspergillus nidulans by using atrpC plasmid. Proc Natl Acad Sci USA 81:1470–1474

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Cary JW, Bhatnagar D, Cleveland TE, Keller NP, Chu FS (1993) Cloning and characterization of a cDNA fromAspergillus parasiticus encoding anO-methyltransferase involved in aflatoxin biosynthesis. Appl Environ Microbiol 59:3564–3571

    PubMed  CAS  Google Scholar 

  • Yu J, Chang P-K, Cary JW, Wright M, Bhatnagar D, Cleveland TE, Payne GA, Linz JE (1995) Comparative mapping of aflatoxin pathway gene clusters inAspergillus parasiticus andAspergillus flavus. Appl Environ Microbiol 61:2365–2371

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B.G. Turgeon

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, JH., Butchko, R.A.E., Fernandes, M. et al. Conservation of structure and function of the aflatoxin regulatory geneaflR fromAspergillus nidulans andA. flavus . Curr Genet 29, 549–555 (1996). https://doi.org/10.1007/BF02426959

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02426959

Key words

Navigation