Skip to main content
Log in

An invariant manifold approach to nonlinear normal modes of oscillation

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Summary

A method for determining the amplitude-dependent mode shapes and the corresponding modal dynamics of weakly nonlinear vibratory systems is described. The method is a combination of a Galerkin projection and invariant manifold techniques and is applied to a class of distributed parameter vibratory systems. In this paper the general theory for a class of conservative systems is outlined and applied to determine the nonlinear mode shapes and modal dynamics of a linear Euler-Bernoulli team attached to a nonlinear elastic foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. M. K. Bennouna and R. G. White (1984),J. Sound Vib. 96(3), 309–331. The effects of large vibration amplitudes on the fundamental mode shape of a clamped-clamped uniform beam.

    Article  Google Scholar 

  2. R. Benamar, M. M. K. Bennouna, and R. G. White (1991),J. Sound Vib. 149(2), 179–195. The effects of large vibration amplitudes on the mode shapes and natural frequencies of thin elastic structures, Part I: simply supported and clamped-clamped beams.

    Article  Google Scholar 

  3. W. Szemplinska (1990),The Behaviour of Non-Linear Vibrating Systems, Vol. 2, Kluwer, Dordrecht.

    Google Scholar 

  4. R. M. Rosenberg (1966),Adv. Appl. Mech. 9, 155–242. On non-linear vibrations of systems with many degrees of freedom.

    Article  Google Scholar 

  5. R. H. Rand (1974),Int. J. Non-Lin. Mech. 9, 363–368. A direct method for non-linear normal modes.

    Article  MATH  Google Scholar 

  6. L. A. Month and R. H. Rand (1980),ASME J. Appl. Mech. 47, 645–651. An application of the Poincaré map to the stability of non-linear normal modes.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. H. Rand, C. H. Pak, and A. F. Vakakis (1992),Acta Mech. 3, 129–145. Bifurcation of nonlinear normal modes in a class of two degree of freedom systems.

    Google Scholar 

  8. A. F. Vakakis (1990), Ph.D. dissertation, California Institute of Technology. Analysis and identification of linear and non-linear normal modes in vibrating systems.

  9. A. F. Vakakis (1992),J. Sound Vib. 158(2), 341–361. Nonsimilar normal oscillations in a strongly nonlinear discrete system.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. F. Vakakis and T. K. Caughey (1992),ASME J. Appl. Mech. 59, 418–424. A theorem on the exact nonsimilar steady state motions of a nonlinear oscillator.

    Article  MathSciNet  Google Scholar 

  11. L. Jezequel and C. H. Lamarque (1991),J. Sound Vib. 149, 429–459. Analysis of non-linear dynamical systems by the normal form theory.

    Article  Google Scholar 

  12. A. F. Vakakis and C. Cetinkaya (1993),SIAM J. Appl. Math. 53, 275–282. Mode localization in a class of multi-degree-of-freedom nonlinear systems with cyclic symmetry.

    MathSciNet  Google Scholar 

  13. S. W. Shaw and C. Pierre (1992),J. Sound Vib. 164(1), 85–124. Normal modes for non-linear vibratory systems.

    Article  MathSciNet  Google Scholar 

  14. S. W. Shaw and C. Pierre (1994),J. Sound Vib.,169(3), 319–347. Normal modes of vibration for non-linear continuous systems.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. H. Nayfeh and S. A. Nayfeh (1994),ASME J. Vib. Acoust., to appear. Nonlinear normal modes of a continuous system with quadratic nonlinearities.

  16. A. H. Nayfeh and S.A. Nayfeh (1994),ASME J. Vib. Acoust., to appear. On nonlinear modes of continuous systems.

  17. A. H. Nayfeh and C. Chen (1994), Preprint, Department of Engineering Science and Mechanics, Virginia Tech, Blacksburg, VA. On nonlinear modes of systems with internal resonance.

  18. M. E. King and A. F. Vakakis (1994),ASME J. Vib. Acoust., to appear. An energy-based formulation for computing nonlinear normal modes in undamped continuous systems.

  19. A. Kelly (1967),J. Math. Anal. Appl. 18, 472–478. On the Liapunov subcenter manifold.

    Article  MathSciNet  Google Scholar 

  20. A. Weinstein (1973),Ann. Math. 98, 377–410. Lagrangian submanifolds and hamiltonian systems.

    Article  MATH  MathSciNet  Google Scholar 

  21. J. Moser (1976),Commun. Pure Appl. Math. 29, 727–747. Periodic orbits near an equilibrium and a theorem by Alan Weinstein. Also, see the erratum,Commun. Pure Appl. Math. 31, 529–530.

    MATH  Google Scholar 

  22. M. Kummer (1990),J. Differential Eqs. 83, 220–243. On resonant classical Hamiltonians withn frequencies.

    Article  MATH  MathSciNet  Google Scholar 

  23. J. Henrard (1973),J. Differential Eqs. 14, 431–441. Lyapunov's center theorem for resonant equilibrium.

    Article  MATH  MathSciNet  Google Scholar 

  24. D. S. Schmidt and D. Sweet (1973),J. Differential Eqs. 14, 597–609. A unifying theory in determining periodic families for Hamiltonian systems at resonance.

    Article  MathSciNet  MATH  Google Scholar 

  25. D. S. Schmidt (1978),J. Math. Anal. Appl. 63, 354–370. Hopf's bifurcation theorem and the center theorem of Liapunov with resonance cases.

    Article  MATH  MathSciNet  Google Scholar 

  26. A. H. Nayfeh, J. F. Nayfeh, and D. T. Mook (1992),Nonlin. Dyn. 2, 145–162. On methods for continuous systems with quadratic and cubic nonlinearities.

    Article  Google Scholar 

  27. J. Carr (1981),Applications of Centre Manifold Theory, Springer-Verlag, New York.

    MATH  Google Scholar 

  28. D. Gilsin (1987),SIAM J. Appl. Math. 47(5), 929–940. Asymptotic approximations of integral manifolds.

    Article  MathSciNet  Google Scholar 

  29. N. Boivin, C. Pierre, and S. W. Shaw (1994),Nonlin. Dyn., to appear. Normal normal modes, invariance, and modal dynamics approximations of non-linear systems.

  30. H. Lamb (1932),Hydrodynamics, 6th ed., Cambridge University Press.

  31. W. Weaver, S. P. Timoshenko, and D. H. Young (1990),Vibration Problems in Engineering, Wiley, New York.

    Google Scholar 

  32. M. Marion and R. Temam (1989),SIAM J. Numer. Anal. 26(5), 1139–1157. Non-linear Galerkin methods.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Jerrold Marsden

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaw, S.W. An invariant manifold approach to nonlinear normal modes of oscillation. J Nonlinear Sci 4, 419–448 (1994). https://doi.org/10.1007/BF02430640

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02430640

Key words

AMS Subject Classifications

Navigation