Skip to main content
Log in

Two-sided linear filter identification

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

It is argued that there are a number of situations in life science where it is desirable to attempt a two-sided linear filter identification. A simple method is presented for the determination of a nonparametric, two-sided linear filter from system input and output data. The time-domain filter is determined from a matrix equation involving the input autocorrelation function and the two-sided cross-correlation function. The resulting filter minimises the sum of squared differences between the actual and predicted outputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basar, E. (1976)Biophysical and physiological systems analysis. Addison-Wesley, Massachusetts.

    Google Scholar 

  • Bendat, J. S. andPiersol, A. G. (1971)Random data: analysis and measurement procedures, Wiley, New York.

    MATH  Google Scholar 

  • Box, G. E. P. andJenkins, G. M. (1976)Time series analysis: forecasting and control. Revised edition Holden-Day, San Francisco.

    MATH  Google Scholar 

  • Brigham, E. O. (1974)The fast Fourier transform. Prentice-Hall, Englewood Cliffs, N.J.

    MATH  Google Scholar 

  • Brillinger, D. R. (1975)Time series: data analysis and theory. Holt, Rinehart & Winston, New York.

    MATH  Google Scholar 

  • Dongarra, J. J., Moler, C. B., Bunch, J. R. andStewart, G. W. (1979)LINPACK users' quide. SIAM, Philadelphia.

    Google Scholar 

  • Eykhoff, P. (1974)System identification: parameter and state estimation. Wiley, London.

    Google Scholar 

  • Graupe, D. (1972)Identification of systems. Van Nostrand, New York.

    MATH  Google Scholar 

  • Hunter, I. W. andKearney, R. E. (1982a) Dynamics of human ankle stiffness: effect of mean torque.J. Biomechanics, (in press).

  • Hunter, I. W. andKearney, R. E. (1982b) NEXUS: A command line decoder and task dispatcher for system and signal analysis. 15th Canadian DECUS Symposium, Toronto.

  • Jenkins, G. M. andWatts, D. G. (1968)Spectral analysis and its applications. Holden-Day, San Francisco.

    MATH  Google Scholar 

  • Kearney, R. E. andHunter, I. W. (1981a) Identification of the human ankle stiffness transfer function.Soc. Neurosci. Abstr.,7, 558.

    Google Scholar 

  • Kearney, R. E. andHunter, I. W. (1981b) APS: A package for the analysis of physiological systems. 14th Canadian DECUS Symposium, Montreal.

  • Kearney, R. E. andHunter, I. W. (1982) Dynamics of human ankle stiffness: variation with displacement amplitude.J. Biomechanics, (in press).

  • Levinson, N. (1947) The Weiner RMS (root mean square) error criterion in filter design and prediction.J. Math. Physics,25, 261–278.

    MathSciNet  Google Scholar 

  • Marmarelis, P. Z. andMarmarelis, V. Z. (1978)Analysis of physiological system: the white noise approach. Plenum, New York.

    Google Scholar 

  • Marple, S. L. (1981) Efficient least squares FIR system identification.IEEE Trans.,ASSP-29, 62–73.

    Google Scholar 

  • McFarland, D. J. (1971)Feedback mechanisms in animal behaviour, Academic Press, London.

    Google Scholar 

  • McFarland, D. J. (1974)Motivational control systems analysis. Academic Press, London.

    Google Scholar 

  • McRuer, D. (1980) Human dynamics in man-machine systems.Automatica,16, 237–253.

    Article  MATH  Google Scholar 

  • Mehra, R. K. andLainiotis, D. G. (1976)System identification: advances and case studies. Academic Press, New York.

    Google Scholar 

  • Milhorn, H. T. (1966)The application of control theory to physiological systems. Saunders, Philadelphia.

    Google Scholar 

  • Milsum, J. H. (1966)Biological control systems analysis. McGraw-Hill, New York.

    Google Scholar 

  • Rabiner, L. R. andAllen, J. B. (1981) Short-time Fourier analysis techniques for FIR system identification and power spectrum estimation.IEEE Trans.,ASSP-27, 182–192.

    Google Scholar 

  • Robinson, E. A. (1978)Multichannel time series analysis with digital computer programs. (Revised edition only. Holden-Day, San Francisco.

    Google Scholar 

  • Schetzen, M. (1980)The Volterra and Wiener theories of nonlinear systems. Wiley, New York.

    MATH  Google Scholar 

  • Sheridan, T. B. andFerrell, W. R. (1974)Man-machine systems: information, control, and decision models of human performance. MIT Press, Cambridge, Mass.

    Google Scholar 

  • Toates, F. M. (1975)Control theory in biology and experimental psychology. Hutchinson, London.

    Google Scholar 

  • Weiss, P. L., Hunter, I. W. andKearney, R. E. (1981) A combined experimental and computational method for the removal of cross talk from an electrophysiological signal.Soc. Neurosci. Abstr.,7, 685.

    Google Scholar 

  • Zohar, S. (1967) Toeplitz matrix inversion: the algorithm of W. F. Trench.J. Ass. Comput. Mach.,16, 592–601.

    MathSciNet  Google Scholar 

  • Zohar, S. (1979) Fortran subroutines for the solution of Toeplitz sets of linear equations.IEEE Trans.,ASSP-27, 656–658.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunter, I.W., Kearney, R.E. Two-sided linear filter identification. Med. Biol. Eng. Comput. 21, 203–209 (1983). https://doi.org/10.1007/BF02441539

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02441539

Keywords

Navigation