Skip to main content
Log in

Technique for the evaluation of derivatives from noisy biomechanical displacement data using a model-based bandwidth-selection procedure

  • Computing and Data Processing
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Smoothing and differentiation of noisy signals are common problems whenever it is difficult or impossible to obtain derivatives by direct measurement. In biomechanics body displacements are frequently assessed and these measurements are affected by noise. To avoid high-frequency noise magnification, data filtering before differentiation is needed. In the approach reported here an autoregressive model is fitted to the signal. This allows the evaluation of the filter bandwidth and the extrapolation of the data. The extrapolation also reduces edge effects. Low-pass filtering is performed in the frequency domain by a linear phase FIR filter and differentiation is performed in the frequency domain. The reported results illustrate the accuracy of the algorithm and its speed (mainly due to the use of the FFT algorithm). Automatic bandwidth selection also guarantees the homogeneity of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike, M. (1969a) Fitting autoregressive models for prediction.Ann. Inst. Statist. Math.,21, 243–247.

    MATH  MathSciNet  Google Scholar 

  • Akaike, M. (1969b) Power spectrum estimation through autoregression model fitting.,21, 407–419.

    MATH  MathSciNet  Google Scholar 

  • Akaike, M. (1970a) On a semi-automatic spectrum estimation procedure. Proc. 3rd Haway Int. Conf. System Sci., Part 2, 974–977.

  • Akaike, M. (1970b) Statistical predictor identification.Ann. Inst. Statist. Math.,22, 203–217.

    MATH  MathSciNet  Google Scholar 

  • Akaike, M. (1971) Autoregressive model fitting for control.,23, 163–180.

    MATH  MathSciNet  Google Scholar 

  • Akaike, M. (1972) Use of an information theoretic quantity for statistical model identification. Proc. 5th Haway Int. Conf. System Sci., 249–250.

  • Akaike, M. (1974) A new look at the statistical model identification.IEEE Trans.,AC-19, 716–723.

    MATH  MathSciNet  Google Scholar 

  • Anderssen, R. S. andBloomfield, P. (1974) Numerical differentiation procedures for non-exact data.Numer. Math.,22, 157–182.

    Article  MATH  MathSciNet  Google Scholar 

  • Blackman, R. B. andTukey, J. W. (1958)The measurement of power spectra from the point of view of communications engineering, Dover Publications Inc., New York.

    Google Scholar 

  • Burg, S. P. (1967) Maximum entropy spectral analysis. Proc. 37th Meeting Society of Exploration Geophysicists, Oklahoma City, Oklahoma.

  • Cappozzo, A., Leo, T. andPedotti, A. (1975) A general computing method for the analysis of human locomotion.J. Biomech.,8, 307–344.

    Article  Google Scholar 

  • Cooley, J. W. andTukey, J. W. (1965) An algorithm for machine calculation of complex Fourier series.Math. Comput.,19, 297–301.

    Article  MATH  MathSciNet  Google Scholar 

  • Craven, P. andWahba, G. (1979) Smoothing noisy data with spline functions.Numer. Math.,31, 377–403.

    Article  MATH  MathSciNet  Google Scholar 

  • Cullum, J. (1971) Numerical differentiation and regularization.SIAM J. on Numer Computat.,8, 254–265.

    Article  MATH  MathSciNet  Google Scholar 

  • Cullum, J. (1979) The effective choice of the smoothing norm in regularization.Math. of Computat.,33, 149–170.

    Article  MATH  MathSciNet  Google Scholar 

  • D'Amico, M. andFerrigno, G. (in press) Estimation of velocities and accelerations from noisy kinematic data. Proc. ISBS 6th Int. Symp. of Biomech. in Sports, Bozeman, Montana, (in press).

  • Durbin, J. (1960) The fitting of time series models.Rev. Inst. Int. de Stat.,28, 233–244.

    Article  MATH  Google Scholar 

  • Ferrigno, G. andPedotti, A. (1985) ELITE: a digital dedicated hardware system for movement analysis via real-time TV signal processing.IEEE Trans.,BME-32, 943–950.

    Google Scholar 

  • Gasser, T., Kohler, W., Jannen-Steinmetz, C. andSroka, L. (1986) The analysis of noisy signals by nonparametric smoothing and differentiation.,BME-32, 1129–1133.

    Google Scholar 

  • Hadamard, J. (1902) Sur les problemes aux derivees partielles et leurs signification physiques.Bull. University of Princeton, 13.

  • Harris, F. J. (1978) On the use of windows for harmonic analysis with the discrete Fourier transform.Proc. IEEE,66, 51–83.

    Google Scholar 

  • Jetto, L. (1985) Small-computer procedure for optimal filtering of haemodynamic data.Med. & Biol. Eng. & Comput.,23, 203–208.

    Google Scholar 

  • Kay, S. N. andMarple, S. L. (1981) Spectrum analysis—a modern perspective.Proc. IEEE,69, 1380–1419.

    Google Scholar 

  • Lanshammar, H. (1981) Precision limits on derivatives obtained from measurement data. InBiomechanics VII-A.Morecki, A., Fidelus, K., Kedzior, K. andWit, A. (Eds.), Polish Publishers' House and University Park Press, Baltimore.

    Google Scholar 

  • Lanshammar, H. (1982a) On practical evaluation of differentiation techniques for human gait analysis.J. Biomech.,15, 99–105.

    Article  Google Scholar 

  • Lanshammar, H. (1982b) On precision limits for derivatives numerically calculated from noisy data.,15, 459–470.

    Article  Google Scholar 

  • Levinson, N. (1947) The Wiener (root mean square) error criterion in filter design and prediction.J. Math. Phys.,25, 261–278.

    MathSciNet  Google Scholar 

  • Makhoul, J. (1975) Linear prediction: a tutorial review.Proc. IEEE,63, 561–580.

    Google Scholar 

  • Marple, S. L. (1987)Digital spectral analysis with applications. Prentice-Hall Inc., Englewood Cliffs, New Jersey.

    Google Scholar 

  • Murphy, M. C. andMann, R. W. (1987) A comparison of smoothing and digital filtering/differentiation of kinematic data. 9th Ann. Conf. of IEEE Eng. in Med. & Biol. Soc., Boston, Massachusetts, 13th–16th Nov., 852–853.

  • Nuttall, A. H. (1976) Spectral analysis of a univariate process with bad data points, via maximum entropy, and linear predictive techniques. Naval Underwater System Center, Tech. Rep. 5303, New London, Connecticut.

  • Oppenheim, A. V. andSchafer, R. W. (1975)Digital signal processing. Prentice-Hall Inc., Englewood Cliffs, New Jersey.

    MATH  Google Scholar 

  • Parzen, E. (1974) Some recent advances in time series modeling.IEEE Trans.,AC-19, 723–730.

    MATH  MathSciNet  Google Scholar 

  • Pezzack, J. C., Norman, R. W. andWinter, D. A. (1977) An assessment of derivative determining techniques used for motion analysis.J. Biomech.,10, 377–382.

    Article  Google Scholar 

  • Rabiner, L. R. andGold, B. (1975)Theory and application of digital signal processing. Prentice-Hall Inc., Englewood Cliffs, New Jersey.

    Google Scholar 

  • Reinsch, C. H. (1967) Smoothing by spline functions.Numer. Math.,10, 177–183.

    Article  MATH  MathSciNet  Google Scholar 

  • Reinsch, C. H. (1971) Smoothing by spline functions II.,16, 451–454.

    Article  MathSciNet  Google Scholar 

  • Schuster, A. (1898) On the investigation of hidden periodicities with application to a supposed 26 day period of meteorological phenomena.Terrestrial Magnetism,3, 13–41.

    Google Scholar 

  • Schuster, A. (1899) The periodogram of magnetic declination as obtained from the records of the Greenwich Observatory during the years 1871–1895.Trans. Cambridge Philosophical Soc.,18, 107–135.

    Google Scholar 

  • Slepian D. (1976) On bandwidth.Proc. IEEE,64, 292–300.

    Article  MathSciNet  Google Scholar 

  • Soudan, K. andDierckx, P. (1979) Calculation of derivatives and Fourier coefficients of human motion data, while using spline functions.J. Biomech.,12, 21–26.

    Article  Google Scholar 

  • Ulrych, T. J. andClayton, R. W. (1976) Time series modeling and maximum entropy.Phys. Earth Planetary Interior,12, 188–200.

    Article  Google Scholar 

  • Utreras, F. (1980) A package for smoothing noisy data with splines. Technical Report MA-80-B-209, Department of Mathematics, University of Chile, Santiago.

    Google Scholar 

  • Vaughan, C. L. (1982) Smoothing and differentiation of displacement-time data: an application of splines and digital filtering.Int. J. Biomed. Comput.,2, 349–362.

    Google Scholar 

  • Wiener, N. (1949)On the interpolation, smoothing and extrapolation of stationary time series. Wiley, New York.

    Google Scholar 

  • Winter, D. A. (1987)The biomechanics and motor control of human gait. University of Waterloo Press, Dana Porter Library, Waterloo, Ontario, Canada.

    Google Scholar 

  • Woltring, H. J. (1985) On optimal smoothing and derivative estimation from noisy displacement data in biomechanics. InHuman movement science, 4 (3), Elsevier Science Publishers B.V., North-Holland, 229–245.

    Google Scholar 

  • Woltring, H. J. (1986) A FORTRAN package for generalized, cross-validatory spline smoothing and differentiation.Adv. Eng. Software,8, 104–113.

    Article  Google Scholar 

  • Wood, G. A. (1982) Data smoothing and differentiation procedures in biomechanics.Exercise & Sport Sci. Rev.,10, 308–362.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

D'Amico, M., Ferrigno, G. Technique for the evaluation of derivatives from noisy biomechanical displacement data using a model-based bandwidth-selection procedure. Med. Biol. Eng. Comput. 28, 407–415 (1990). https://doi.org/10.1007/BF02441963

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02441963

Keywords

Navigation