Skip to main content
Log in

Beta-adrenergic control and inter-relationships between heart rate and blood pressure in neonatal lambs

  • Computing and Data Processing
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Our aim was to develop a signal analysis method for revealing interrelationships between heart rate and blood pressure and for displaying the influence of autonomic nervous control on these signals in a chronic lamb model. A chronically instrumented neonatal lamb model was made to record ECG and direct arterial blood pressure (N=15). Continuous two-minute recordings of blood pressure (BP) and ECG were digitised. The instantaneous heart rate signal (IHR) was derived from the ECG. The IHR and BP signals were bandpass filtered. Autospectra, cross-spectra, coherence spectra and phase spectra for the signals were computed to study the relative magnitudes and inter-relationships of the cardiovascular signals under normal conditions and during beta-adrenergic blockade. It was noted that both in the BP and IHR there were oscillations at the frequency of <0·1 Hz and also at the respiratory rate around 0·6 Hz. Beta-blockade reduced the oscillations of the IHR in <30-day-old lambs. It did not affect the coherence spectra or the phase lag between the signals. During quiet sleep the variability of blood pressure was decreased. In over-30-day-old-lambs the beta-blockade did not affect the variabilities of the cardiovascular parameters. These findings indicate that in neonatal lambs the sympathetic control system is a major regulator of cardiovascular interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akselrod, S., Gordon, D., Ubel, F. A., Shannon, D. C., Barger, A. C. andCohen, R. J. (1981) Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control.Science,213, 220–222.

    Google Scholar 

  • Akselrod, S., Gordon, D., Madwed, J. B., Snidman, N. C., Shannon, D. C. andCohen, R. J. (1985) Hemodynamic regulation: investigation by spectral analysis.Am. J. Physiol.,249, H867-H875.

    Google Scholar 

  • Bainbridge, F. A. (1920) The relation between respiration and the pulse rate.J. Physiol.,54, 192–202.

    Google Scholar 

  • Berson, A. S. (1970) Analog-to-digital conversion for medicine. InClinical electrocardiography and computers.Caceres, C. A. (Ed.), New York 21–35.

  • Clement, D. L., de Pue, N., Jordaens, L. J. andPacket, L. (1985) Adrenergic and vagal influences on blood pressure variability.Clin. Exp. Hypertens. (A),7, (2–3), 159–166.

    Article  Google Scholar 

  • Dawes, G. S., Johnston, B. M. andWalker, D. W. (1980) Relationship of arterial blood pressure and heart rate in fetal newborn and adult sheep.J. Physiol.,309, 405–417.

    Google Scholar 

  • de Boer, R. W., Karemaker, J. M. andStrackee, J. (1985) Relationships between short-term blood-pressure fluctuations and heart-rate variability in resting subjects I: a spectral analysis approach.Med. & Biol. Eng. & Comput.,23, 352–358.

    Article  Google Scholar 

  • Downing, S. E., Talner, N. S., Campbell, G. H., Hollborn, K. M. andWay, H. B. (1969) Influence of sympathetic nerve stimulation on ventricular function in the newborn lamb.Circ. Res.,25, 417–418.

    Google Scholar 

  • Fiser, B., Honzikova, N. andPenaz, J. (1978) Power spectra of spontaneous variations of indirectly recorded blood pressure, heart rate and acral blood flow.Automedica,2, 143–147.

    Google Scholar 

  • Grönlund, J., Metsäla, T., Antila, K., Oja, R., Halkola, L., Siimes, A. andVälimaki, I. (1985) Quantification of interrelations between heart rate, respiration, and arterial blood pressure by cross-spectral analysis in neonatal lambs. Proc. XIV ICMBE and VII ICMP,Med. & Biol. Eng. & Comput.,23, Suppl., Part 1, 509–510.

    Google Scholar 

  • Hyndman, B. W., Kitney, R. I. andSayers, B. McA. (1971) Spontaneous rhythms in physiological control systems.Nature,233, 339–341.

    Article  Google Scholar 

  • Jenkins, G. M. andWatts, D. G. (1969)Spectral analysis and its applications. Holden-Day, San Francisco, USA.

    Google Scholar 

  • Jones, J. V. andSleight, P. (1981) Reflex control of the circulation in hypertensive humans. InDisturbances in neurogenic control of the circulation. American Physiological Society, USA, 161–175.

    Google Scholar 

  • Kitney, R. I. (1979) A nonlinear model for studying oscillations in the blood pressure system.J. Biomed. Eng.,2, 89–99.

    Google Scholar 

  • Kitney, R. I., Linkens, D., Selman, A. andMcDonald, A. (1982) The interaction between heart rate and respiration: Part II—Nonlinear analysis based on computer modelling.Automedica,4, 141–153.

    Google Scholar 

  • Langhorst, P., Schultz, B., Lambertz, M., Schultz, G. andCamerer, H. (1980) Dynamic characteristics of the ‘unspecific brain stem system’. InCentral interaction between respiratory and cardiovascular control systems.Koepchen, H. P., Hilton, S. M. andTrzebski, A. (Eds.), Springer, Berlin, 30–41.

    Google Scholar 

  • Lindqvist, A., Oja, R., Hellman, O. andVälimäki, I. A. T. (1983) Impact of thermal vasomotor control on the heart rate variability of newborn infants.Early Human Dev.,8, 37–47.

    Article  Google Scholar 

  • Macy, J. (1965) Analog-digital conversion systems. InComputers in biomedical research, vol. 2.Stacy, R. W. andWadman, B. D. (Eds.), Academic Press, New York, 3–34.

    Google Scholar 

  • Mancia, G., Ferrari, A., Gregorini, L., Parati, G., Pomidossi, G., Bertinieri, G., Grassi, G., di Rienzo, M., Pedotti, A. andZanchetti, A. (1983) Blood pressure and heart rate variabilities in normotensive and hypertensive human beings.Circ. Res.,53, 96–104.

    Google Scholar 

  • Prechtl, H. F. R. (1974) The behavioral states of the newborn infant.Brain Res.,76, 185–212.

    Article  Google Scholar 

  • Rabiner, L. B. andGold, B. (1975)Theory and application of digital signal processing. Prentice-Hall Inc., USA, 356–435.

    Google Scholar 

  • Rabiner, L. B., McGonegal, C. A. andPaul, D. (1979) FIR windowed filter design program—WINDOW. InPrograms for digital signal processing. Digital Signal Processing Committee (Ed.), IEEE Press, New York, 5.2–00052.

    Google Scholar 

  • Sayers, B. (1973) Analysis of heart rate variability.Ergonomics,16, 17–32.

    Google Scholar 

  • Sayers, B. McA. (1980) Signal analysis of heart rate variability. InThe study of heart rate variability.Kitney, R. I., Rompelman, O. (Eds), Oxford University Press, Oxford.

    Google Scholar 

  • Scher, A. M. andYoung, A. C. (1963) Servoanalysis of carotid sinus reflex effects on peripheral resistance.Circ. Res.,12, 152–156.

    Google Scholar 

  • Siimes, A. S. I., Välimaki, I. A. T., Sarajas, H. S. S., Sakone, K. andOja, R. T. (1984) Heart rate variation in relation to age and sleep state in neonatal lambs.Acta Physiol. Scand., Suppl. 537, 7–15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grönlund, J.U., Antila, K.J., Siimes, A.S.I. et al. Beta-adrenergic control and inter-relationships between heart rate and blood pressure in neonatal lambs. Med. Biol. Eng. Comput. 27, 163–170 (1989). https://doi.org/10.1007/BF02446226

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02446226

Keywords

Navigation