Skip to main content
Log in

Sources of the thoracic cardiogenic electrical impedance signal as determined by a model

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A three-dimensional electrical model was developed to study the origin of ΔZ due to cardiac activity recorded from band electrodes around the neck and lower thorax. Volume changes were simulated with resistivity changes in the lungs, large arteries, large veins and atria, ventricles, small arteries and veins and the skeletal muscle for a typical 80 ml ventricular stroke volume. The results showed the contributions to ΔZ to be 61 per cent from the lungs, 23 per cent from the large arteries and 13 per cent from the skeletal muscle. The ΔZ signal was most sensitive to skeletal muscle volume change The results indicate that the ΔZ signal has many origins which could cause significant error in calculated cardiac function it all the regions do not change in the normal related pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bache, R. J., Harley, A. andGreenfield, J. C. Jr. (1969) Evaluation of thoracic impedance plethysmography as an indicator of stroke volume in man.Am. J. Med. Sci.,258, 100–113.

    Article  Google Scholar 

  • Baker, L. E., Judy, W. V., Geddes, L. E., Langley, F. M. andHill, D. W. (1971) The measurement of cardiac output by means of electrical impedance.Cardiovasc. Res. Cent. Bull.,9, 135–145.

    Google Scholar 

  • Benchimol, A., Barreto, E. C. andTio, S. (1970) Phasic right atrium and superior vena cava flow velocity in patients with tricuspid insufficiency.Am. Heart J.,79, 603–612.

    Article  Google Scholar 

  • Carre, B. A. (1961) The determination of the optimum accelerating factor for successive over-relaxation.Comput. J.,4, 73–78.

    Article  MATH  Google Scholar 

  • Coffman, J. D. (1966)Best & Taylor's physiological basis of medical practice. Williams & Wilkins, Baltimore, 849–852.

    Google Scholar 

  • Eycleshymer, A. C. andSchoemaker, D. M. (1911)A cross-section anatomy. D. Appleton Co., New York.

    Google Scholar 

  • Forsythe, G. E. andWasow, W. R. (1960)Finite-difference methods for partial differential equations, Wiley, New York.

    MATH  Google Scholar 

  • Fricke, H. (1931) The electric conductivity and capacity of disperse systems.Physics,1, 106–115.

    Article  Google Scholar 

  • Geddes, L. E. andBaker, L. E. (1972) Thoracic impedance changes following saline injection into right and left ventricles.J. Appl. Physiol.,33, 278–281.

    Google Scholar 

  • Hill, D. W. andLowe, H. J. (1973) The use of the electrical impedance technique for the monitoring of cardiac output and limb bloodflow during anaesthesia.Med. & Biol. Eng.,9, 534–545.

    Google Scholar 

  • Hokanson, D. E., Strandness, D. E. Jr. andMiller, C. W. (1970) An echo tracking system for recording arterial-wall motion.IEEE Trans.,SU-17, 130–132.

    Google Scholar 

  • Hokanson, D. E., Mozersky, D. J., Sumner, D. S. andStrandness, D. E. Jr. (1972) A phase-locked echo tracking system for recording arterial diameter changesin vivo.J. Appl. Physiol.,32, 728–733.

    Google Scholar 

  • Judy, W. V., Langley, F. M., McCowen, K. D., Stinnett, D. M., Baker, L. E. andJohnson, P. C. (1969) Comparative evaluation of the thoracic impedance and isotope dilution methods for measuring cardiac output.Aerosp. Med.,40, 532–536.

    Google Scholar 

  • Karnegis, J. N. andKubicek, W. G. (1970) Physiological correlates of the cardiac thoracic impedance waveform.Am. Heart J.,79, 519–523.

    Article  Google Scholar 

  • Kinnen, E., Kubicek, W. andPatterson, R. (1964) Thoracic cage measurements. Impedance plethysmographic determination of cardiac output. School of Aerospace Medicine, Tech. Rep. TDR-64-15.

  • Kubicek, W. G., Karnegis, J. N., Patterson, R. P., Witsoe, D. A. andMattson, R. H. (1966) Development and evaluation of an impedance cardiac output system.Aerosp. Med.,37, 1208–1212.

    Google Scholar 

  • Kubicek, W. G., Patterson, R. P., Lillehei, R. C., From, A. H. L., Castaneda, A. andErsek, R. (1970a) Impedance cardiography as a noninvasive means to monitor cardiac function.J. Am. Assoc. for Advancement of Med. Instrumentation,4, 79–84.

    Google Scholar 

  • Kubicek, W. G., Patterson, R. P. andWitsoe, D. A. (1970b) Impedance cardiography as a noninvasive method to monitor cardiac function and other parameters of the cardiovascular system. International Conference on Bioelectrical Impedance.Ann. NY Acad. Sci.,170, 724–732.

    Google Scholar 

  • Lababidi, Z., Ehmke, D. A., Durnin, R. P., Leaverton, P. E. andLauer, R. M. (1971) Evaluation of impedance cardiac output in children.Pediatrics,47, 870–879.

    Google Scholar 

  • Olson, R. M. andShelton, D. K. Jr. (1972) A nondestructive technique to measure wall displacement in the thoracic aorta.J. Appl. Physiol.,32, 147–151.

    Google Scholar 

  • Patterson, R., Kubicek, W. G., Kinnen, E., Noren, G. andWitsoe, D. (1964) Development of an electrical impedance plethysmograph system to monitor cardiac output. Proceedings of 1st Annual Rocky Mountains Conference on Biomedical Engineering, Colorado Springs, Vol. 1, 56–71.

    Google Scholar 

  • Patterson, R. P. (1965) Cardiac output determinations using impedance plethysmography. MSEE Thesis, University of Minnesota, Minneapolis, Minnesota.

    Google Scholar 

  • Patterson, R. P., Witsoe, D. A., From, A. H. L. andKubicek, W. G. (1973) Studies on the cardiogenic origin of the thoracic electrical impedance change. Proceedings of the 26th Annual Conference on Engineering in Medicine and Biology, 15, 69.

    Google Scholar 

  • Patterson, R. P., Kubicek, W. G., Witsoe, D. A. andFrom, A. H. L. (1978) Studies on the effect of controlled volume change on the thoracic electrical impedance.Med. & Biol. Eng. & Comput.,16, 531–536.

    Google Scholar 

  • Payne, R. M., Stone, H. L. andEngelken, E. J. (1971) Atrial function during volume loading.J. Appl. Physiol.,31, 326–331.

    Google Scholar 

  • Ross, G., Kolin, A. andAustin, S. (1964) Electromagnetic observations on coronary arterial blood flow.Proc. Nat. Acad. Sci.,52, 692–699.

    Article  Google Scholar 

  • Rushmer, R. F. (1954) Continuous measurements of left ventricular dimensions in intact, unanesthetized dogs.Circ. Res.,2, 14–21.

    Google Scholar 

  • Sakamoto, K., Muto, K., Kanai, H. andIizuka, M. (1979) Problems of impedance cardiography.Med. & Biol. Eng. & Comput.,17, 697–709.

    Article  Google Scholar 

  • Smith, J. J., Wiedmeier, V. T., Tristani, F. E. andCooper, K. E. (1969) Measurement of cardiac output during body tilt using the impedance cardiograph.Fed. Proc.,28, 643.

    Google Scholar 

  • Tagur, E. andGuntheroth, W. G. (1966) Simultaneous pressure, flow and diameter of the vena cava with fright and exercise.Circ. Res.,9, 42–50.

    Google Scholar 

  • Wiener, F. (1964) The mechanics of the pulmonary circulation. Ph.D. thesis, Columbia University.

  • Witsoe, D. A. (1967) Electrical resistivity of lung at 100 kHz.Med. & Biol. Eng.,5, 239–248.

    Google Scholar 

  • Witwer, J. G., Trezek, G. J. andJewett, D. L. (1972) The effect of media inhomogeneities upon intracranial electrical fields.IEEE Trans.,BME-19, 352–361.

    Google Scholar 

  • Young, D. (1954) Itertive methods for solving partial difference equations of elliptic type.Trans. Am. Math. Soc.,76, 92–111.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patterson, R.P. Sources of the thoracic cardiogenic electrical impedance signal as determined by a model. Med. Biol. Eng. Comput. 23, 411–417 (1985). https://doi.org/10.1007/BF02448927

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02448927

Keywords

Navigation