Skip to main content
Log in

Symmetric conservative form of low-temperature phonon gas hydrodynamics

I.-Kinetic aspect of the theory

  • Published:
Il Nuovo Cimento D

Summary

The low-temperature phonon gas hydrodynamics, proposed by Nielsen and Skhlovsky, is reconsidered as the next example of the physical system which admits the symmetric conservative form of the governing equations. By means of this example, the unique correspondence between the hydrodynamics equations admitting symmetric conservative form and the description of the state of a gas by the distribution function, which maximizes the entropy and the entropy flux under the respective set of constraints, is demonstrated. It is shown that such a distribution function implies concavity of the entropy, hyperbolicity of the system of governing equations and the finite speeds of propagation of disturbances in the neighbourhood of the local thermodynamic equilibrium. It is also indicated that the theory considerably simplifies when the domain of phonon wave vectors is approximated by the whole three-dimensional vector space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Х. Рильсен, Ъ. И. Шкловский:Žurm. Teor. Exp. Fiz.,56, 709 (1969).

    Google Scholar 

  2. R. J. Hardy:Phys. Rev. B,2, 1193 (1970).

    Article  ADS  Google Scholar 

  3. И. Р. Гуревич:Кинемика Фозонных Сисмем (Nauka, Moscow, 1980.

    Google Scholar 

  4. W. Dreyer:J. Phys. A,20, 6505 (1987).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. С. К. Годунов:Dokl. Akad. Nauk,139, 521 (1961).

    Google Scholar 

  6. С. К. Годунов:Usp. Mat. Nauk,17, 147 (1962).

    Google Scholar 

  7. K. O. Friedrichs andP. D. Lax:Proc. Nat. Sci. USA,68, 1686 (1971).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. K. O. Friedrichs:Comm. Pure Appl. Math.,27, 749 (1974).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. K. O. Friedrichs:Comm. Pure Appl. Math.,31, 123 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  10. P. D. Lax:Shock waves and entropy, inContributions to Nonlinear Functional Analysis, edited byE. H. Zarantello (Academic Press, New York-London, 1971), p. 603.

    Google Scholar 

  11. G. Boillat:C. R. Acad. Sci. Paris, Serie A,278, 909 (1974).

    MATH  MathSciNet  Google Scholar 

  12. G. Boillat:C. R. Acad. Sci. Paris, Serie A,283, 409 (1976).

    MATH  MathSciNet  Google Scholar 

  13. T. Ruggeri: andA. Strumia:Ann. Inst. Henri Poincare, Sect. A,34, 65 (1981).

    MATH  MathSciNet  Google Scholar 

  14. T. Ruggeri:Suppl. Boll. Unione Mat. Ital., Fisica Matematica,4, 261 (1985).

    MathSciNet  Google Scholar 

  15. T. Ruggeri:Entropy principle, symmetric hyperbolic systems and shock waves, inProceedings of the Conference on Wave Phenomena '83, Toronto (1983), edited byC. Rogers (North-Holland, Amsterdam, 1984), p. 211.

    Google Scholar 

  16. T. Ruggeri:Acta Mechanica,47, 167 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  17. D. Fusco:Atti Sem. Mat. Fis. Univ. Modena,28, 223 (1979).

    MATH  MathSciNet  Google Scholar 

  18. N. Virgopia andF. Ferraioli:Nuovo Cimento B,81, 197 (1984).

    MathSciNet  ADS  Google Scholar 

  19. T. Ruggeri andA. Strumia:J. Math. Phys.,22, 1824 (1981).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. G. Boillat andS. Pluchino:ZAMP,36, 893 (1985).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. G. Boillat andA. Muracchini:ZAMP,35, 282 (1984).

    Article  MATH  ADS  Google Scholar 

  22. G. Boillat andA. Muracchini:ZAMP,36, 901 (1985).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. A. Muracchini andT. Ruggeri:Suppl. Boll. Unione Mat. Ital., Fisica Matematica,5, 117 (1986).

    MATH  MathSciNet  Google Scholar 

  24. G. Boillat andG. Venturi:Nuovo Cimento A,77, 358 (1983).

    ADS  Google Scholar 

  25. G. Boillat andT. Ruggeri:Acta Mechanica,35, 271 (1980).

    Article  MATH  ADS  Google Scholar 

  26. T. Ruggeri:Rend. Sem. Mat. Univ. Padova,68, 79 (1982).

    MATH  MathSciNet  Google Scholar 

  27. A. Muracchini andT. Ruggeri:Atti Sem. Mat. Fis. Univ. Modena,37, 183 (1989).

    MATH  MathSciNet  Google Scholar 

  28. A. Morro andT. Ruggeri:Int. J. Non-Linear Mech.,22, 27 (1987).

    Article  MATH  ADS  Google Scholar 

  29. I-S. Liu andI. Müller:Arch. Rational Mech. Anal.83, 285 (1983).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. I-S. Liu:Arch. Rational Mech. Anal.88, 1 (1985).

    MATH  MathSciNet  ADS  Google Scholar 

  31. I-S. Liu:Nuovo Cimento B,92, 121 (1986).

    Article  ADS  Google Scholar 

  32. I. Müller:Extended thermodynamics—past, present, future, inRecent Developments in Nonequilibrium Thermodynamics, Barcellona 1983, edited byJ. Cases-Vazquez, D. Jou andG. Lebon (Springer, Berlin, 1984), p. 32.

    Google Scholar 

  33. J. A. Reissland:The Phisics of Phonons (Wiley, London, 1973).

    Google Scholar 

  34. R. E. Peierls:Quantum Theory of Solids (Clarendon Press, Oxford, 1955).

    MATH  Google Scholar 

  35. R. Kubo:The Boltzmann equation in solid state of physics, inProceedings of the International Symposium «110 Years Boltzmann Equation», edited byE. G. D. Cohen andW. Thiring (Springer, Wien, 1973), p. 301.

    Google Scholar 

  36. J. A. Sussmann andA. Thellung:Proc. Phys. Soc. (London),81, 1122 (1963).

    Article  MATH  Google Scholar 

  37. R. A. Guyer andI. A. Krumhansl:Phys. Rev.,148, 766 (1966).

    Article  ADS  Google Scholar 

  38. R. A. Guyer andI. A. Krumhansl:Phis. Rev.,148, 778 (1966).

    Article  ADS  Google Scholar 

  39. H. Beck, P. F. Meier andA. Thellung:Phys. Status Solidi,24a, 11 (1974).

    ADS  Google Scholar 

  40. T. O. Woodruff andH. Ehrenreich:Phys. Rev.,123, 1553 (1961).

    Article  MATH  ADS  Google Scholar 

  41. W. Larecki andS. Piekarski:Phonon gas hydrodynamic aspect of extended field theory of rigid heat conductor, submitted toArch. Mech.

  42. Д. Н. Зубарев:Неравновесная Смамическая Термо∂инамика (Nauka, Moscow, 1971).

    Google Scholar 

  43. Z. Banach:Continuum Models of Discrete Systems, edited byA. J. M. Spencer (A. A. Balkema, Rotterdam/Boston, 1987), p. 111.

    Google Scholar 

  44. M. N. Kogan:On the principle of maximum entropy, inProceedings of the Symposium on Rarefied Gas Dynamics, inAdv. Appl. Mech., Vol.1, suppl. 4, 359 (Academic Press, New York, N.Y., 1967).

    Google Scholar 

  45. У. М. Сулпангазин:Дискреые Нелинейные Мо∂е∂и Уравнения Ъольцмана (Nauka, Alma-Ata, 1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors of this paper have agreed to not receive the proofs for correction.

This work was supported in 50% by C.P.B.P.02.01 and in 50% by C.P.B.P.02.03. The reported research was performed with the framework of joint research program of the Department of the Theory of Continuous Media at the Institute of Fundamental Technological Research Polish Academy of Sciences and the Faculty of Physic at the University of Padeborn, FRG.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larecki, W., Piekarski, S. Symmetric conservative form of low-temperature phonon gas hydrodynamics. Il Nuovo Cimento D 13, 31–53 (1991). https://doi.org/10.1007/BF02451273

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02451273

PACS 63.20

PACS 66.70

PACS 65.50

Navigation