Skip to main content
Log in

Dynamical behaviour of biological regulatory networks—I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In the field of biological regulation, models dictated by expreimental work are usually complex networks comprising intertwined feedback loops. In this paper the biological roles of individual positive loops (multistationarity, differentiation) and negative loops (homeostasis, with or without oscillations, buffering of gene dosage effect) are discussed. The relationship between feedback loops and steady states is then clarified, and the problem: “How can one conveniently disentangle complex networks?” is then considered. Initiated long ago, logical descriptions have been generalized from various viewpoints; these developments are briefly discussed. The recent concept of the loop-characteristic state, defined as the logical state located at the level of the thresholds involved in the loop, together with its application, are then presented. Biological applications are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Cohn, M. and K. Horibata. 1959. Inhibition by the glucose of the induced synthesis of the β-galactoside-enzyme system ofEscherichia coli—Analysis of maintenance.J. Bacteriol. 78, 601–612.

    Google Scholar 

  • Delbrück, M. 1949. Discussion. In:Urités Biologiques Douées de Continuité Génétique. Editions du CNRS (Lyon), 33–34.

  • Eisen, H., P. Brachet, L. Pereira da Silva and F. Jacob. 1970. Regulation of repressor expression in λ.Proc. natn. Acad. Sci. U.S.A. 66, 855–862.

    Article  Google Scholar 

  • Eisenfeld, J. 1987. Compatibility tests on immunological control loops.Ann. N.Y. Acad. Sci. 504, 132–150.

    Google Scholar 

  • Eisenfeld, J. and C. De Lisi (Eds). 1985. On conditions for qualitative instability of regulatory circuits with applications to immunological control loops. InMathematics and Computers in Biomathematical Applications, pp. 39–53. New York: Elsevier.

    Google Scholar 

  • Glass, L. 1975. Combinatorial and topological methods in nonlinear chemical kinetics.J. Chem. Phys. 63, 1325–1335.

    Article  Google Scholar 

  • Glass, L. and S. A. Kauffman. 1973. The logical analysis of continuous non-linear biochemical control networks.J. theor. Biol 39, 103–115.

    Article  Google Scholar 

  • Glass, L. and J. S. Pasternak. 1978. Prediction of limit cycles in mathematical models of biological oscillations.Bull. math. Biol. 40, 27–44.

    Article  Google Scholar 

  • Golbeter, A. 1990.Rythmes et Chaos dans les Systèmes Biochimiques et Cellulaires. Paris: Masson.

    Google Scholar 

  • Kauffman, S. A. 1969. Metabolic stability and epigenesis in randomly constructed genetic nets.J. theor. Biol. 22, 437–467.

    Article  MathSciNet  Google Scholar 

  • Kaufman, M. 1988. Role of multistability in an immune response model: a combined discrete and continuous approach. In:Theoretical Immunology, Part One, SFI Studies in the Sciences of Complexity, A. Perelson (Ed.), pp. 199–222. Redwood City, California.

  • Levins, R. 1975. Evolution in communities near equilibrium. In.Ecology and Evolution of Communities, M. L. Cody and J. M. Diamond (Eds), pp. 16–50. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Lim, D. J., Oppenheim, T. Eckhardt and W. K. Maas. 1988. The unitary hypothesis for the repression mechanism of arginine biosynthesis inE. coli K12—revisited after 18 years. In:Gene Expression and Regulation: the Legacy of Luigi Gorini, Bissel, Deho, Sironi and Torriani (Eds.). New York: Excerpta Medica.

    Google Scholar 

  • May, R. M. 1973.Stability and Complexity in Model Ecosystems. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Novick, A. and M. Weiner. 1957. Enzyme induction as an all-or-none phenomenon.Proc. natn. Acad. Sci. U.S.A. 43, 553–566.

    Article  Google Scholar 

  • Plahte, E., T. Mestl and S. Omholt. 1995. Feedback loops, stability and multistationarity in dynamical system. In:Mathematics Applied to Biology and Medicine, J. Demongeot and P. Auger (Eds). Singapore: World Scientific. In press.

    Google Scholar 

  • Quirk, J. and R. Ruppert. 1965. Qualitative economics and the stability of equilibrium.Rev. Econ. Studies 32, 311–326.

    Article  Google Scholar 

  • Rosen, R. 1968. Recent developments in the theory of control and regulation of cellular processes.Int. Rev. Cytology 23, 25–88.

    Google Scholar 

  • Snoussi, E. H. 1989. Qualitative dynamics of piece-linear differential equations: a discrete mapping approach.Dyn. Stability Syst 4, 189–207.

    MATH  MathSciNet  Google Scholar 

  • Snoussi, E. H. and R. Thomas. 1993. Logical identification of all steady states: the concept of feedback loop characteristic states.Bull. math. Biol. 55, 973–991.

    Article  MATH  Google Scholar 

  • Thieffry, D. L., M. Colet and R. Thomas. 1993. Formalization of regulatory networks: a logical method and its automatization.Math. Modelling and Sci. Computing 2, 144–151.

    MATH  Google Scholar 

  • Thieffry, D., E. Verdin and M. Colet. 1993. Regulation of HIV expression: a logical analysis. In:Mathematics Applied to Biology and Medicine, Demongeot and Capasso (Eds), pp. 291–304. Winnipeg, Canada: Wuerz Publishing Ltd.

    Google Scholar 

  • Thieffry, D., E. H. Snoussi, J. Richelle and R. Thomas 1995. Positive loops and differentiation. In:Mathematics Applied to Biology and Medicine. J. Demongeot and P. Auger (Eds). Singapore: World Scientific. In press.

    Google Scholar 

  • Thomas, R. 1973. Boolean formalization of genetic control circuits.J. theor. Biol. 42, 563–585.

    Article  Google Scholar 

  • Thomas, R. 1978. Logical analysis of systems comprising feedback loops.J. theor. Biol. 73, 631–656.

    Article  Google Scholar 

  • Thomas, R. (Ed.) 1979. Kinetic logic: a Boolean approach to the analysis of complex regulatory systems.Lect. Notes Biomath.29, 507.

    Google Scholar 

  • Thomas, R. 1981. On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations. In:Numerical Methods in the Study of Critical Phenomena, Della Dora, Demongeot and Lacolle (Eds), pp. 180–193. Berlin: Springer Verlag.

    Google Scholar 

  • Thomas, R. 1983. Logical vs continuous description of systems comprising feedback loops: the relation between time delays and parameters.Studies in Physical and Theoretical Chemistry 28, 307–321.

    Google Scholar 

  • Thomas, R. 1991. Regulatory networks seen as asynchronous automata: a logical description.J. theor. Biol. 153, 1–23.

    Google Scholar 

  • Thomas, R. 1994. The role of feedback circuits: positive feedback circuits are a necessary condition for positive real eigenvalues of the Jacobian matrix.Ber. Besenges. Phys. Chem. 98, 1148–1151.

    Google Scholar 

  • Thomas, R. and R. D'Ari. 1990.Biological Feedback. Boca Raton, Florida: CRC Press.

    MATH  Google Scholar 

  • Tian, G., D. Lim, J. D. Oppenheim and W. K. Maas. 1994. Explanation for different types of regulation of arginine biosynthesis betweenEscherichia coli B andEscherichia coli K12 caused by a difference between their arginine repressors.J. Mol. Biol. 235, 221–231.

    Article  Google Scholar 

  • Tyson, J. 1975. Classification of instabilities in chemical reaction systems.J. Chem. Phys. 62, 1010–1015.

    Article  Google Scholar 

  • Van Ham, P. 1979. How to deal with more than two levels.Lect. Notes Biomath 29, 326–343.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, R., Thieffry, D. & Kaufman, M. Dynamical behaviour of biological regulatory networks—I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state. Bltn Mathcal Biology 57, 247–276 (1995). https://doi.org/10.1007/BF02460618

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460618

Keywords

Navigation