Skip to main content
Log in

Sperm motility in the presence of boundaries

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The fluid dynamics of sperm motility near both rigid and elastic walls is studied using the immersed boundary method. Simulations of both single and interacting organisms are presented. In particular, we find that nearby organisms originally undulating with a 90° phase shift may adjust their relative swimming velocities and phase-lock. Comparisons with previous analytical results are also discussed. The tendency of a near-wall to attract organisms is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beyer, R. P. 1992. A computational model of the cochlea using the immersed boundary method.J. Comput. Phys. 98, 145–162.

    Article  MATH  Google Scholar 

  • Brennen, C. and H. Winet. 1977. Fluid mechanics of propulsion by cilia and flagella.Ann. Rev. Fluid Mech. 9, 339–398.

    Article  MATH  Google Scholar 

  • Chorin, A. J. 1968. Numerical solution of the Navier-Stokes equations.Math. Comp. 22, 745.

    Article  MATH  MathSciNet  Google Scholar 

  • Dillon, R., L. Fauci and D. Gaver. 1995. A microscale model of microbial transport in porous media. InNumerical Methods for Water Resources. Kluwer Academic Press.

  • Dresdner, R. D. and D. F. Katz. 1981. Relationships of mammalian sperm motility and morphology to hydrodynamic aspects of cell function.Biol. Reprod. 25, 920–930.

    Article  Google Scholar 

  • Fauci, L. J. 1990. Interaction of oscillating filaments: a computational study.J. Comput. Phys. 86, 294–313.

    Article  MATH  MathSciNet  Google Scholar 

  • Fauci, L. J. 1992. Peristaltic pumping of solid particles.Comp. Fluids 21, 583–598.

    Article  MATH  Google Scholar 

  • Fauci, L. J. 1993. Computational modeling of the swimming of biflagellated algal cells.Contemp. Math. 141, 91–102.

    MATH  MathSciNet  Google Scholar 

  • Fauci, L. J. and C. S. Peskin. 1988. A computational model of aquatic animal locomotion.J. Comput. Phys. 77, 85–108.

    Article  MATH  MathSciNet  Google Scholar 

  • Fauci, L. J. and A. L. Fogelson. 1993. Truncated Newton methods and the modeling of complex immersed elastic structures.Comm. Pure Appl. Math. 46, 787–818.

    MathSciNet  Google Scholar 

  • Fogelson, A. L. 1984. A mathematical model and numerical method for studying platelet adhesion and aggregation during blood clotting.J. Comput. Phys. 56, 111–134.

    Article  MATH  MathSciNet  Google Scholar 

  • Fogelson, A. L. and C. S. Peskin. 1988. A fast numerical method for solving the threedimensional Stokes' equations in the presence of suspended particles.J. Comp. Phys. 79, 50–69.

    Article  MATH  MathSciNet  Google Scholar 

  • Gray, J. and G. Hancock. 1955. The propulsion of sea-urchin spermatozoa.J. Exp. Biol. 32, 802–814.

    Google Scholar 

  • Gueron, S. and N. Liron. 1992. Ciliary motion modeling, and dynamic multicilia interactions.Biophys. J. 63, 1045–1058.

    Google Scholar 

  • Gueron, S. and N. Liron. 1993. Simulations of three-dimensional ciliary beats and cilia interactions.Biophys. J. 65, 499–507.

    Article  Google Scholar 

  • Higdon, J. J. L. 1979a. A hydrodynamic analysis of flagellar propulsion.J. Fluid Mech. 90, 685–711.

    Article  MATH  MathSciNet  Google Scholar 

  • Higdon, J. J. L. 1979b. The hydrodynamics analysis of flagellar propulsion: helical waves.J. Fluid Mech. 94, 331–351.

    Article  MATH  MathSciNet  Google Scholar 

  • Higdon, J. J. L. 1979c. The generation of feeding currents by flagellar motion.J. Fluid Mech. 94, 305–330.

    Article  MATH  MathSciNet  Google Scholar 

  • Katz, D. F. 1974. On the propulsion of micro-organisms near solid boundaries.J. Fluid Mech. 64, 33–49.

    Article  MATH  Google Scholar 

  • Katz, D. F. and S. A. Berger. 1980. Flagellar propulsion of human sperm in cervical mucus.Biorheol. 17, 169–175.

    Google Scholar 

  • Lighthill, J. L. 1976. Flagellar hydrodynamics.SIAM Rev. 18, 161–230.

    Article  MATH  MathSciNet  Google Scholar 

  • Pedley, T. J. and J. O. Kessler. 1992. Hydrodynamic phenomena in suspensions of swimming microorganisms.Ann. Rev. Fluid Mech. 24, 313–358.

    Article  MATH  MathSciNet  Google Scholar 

  • Peskin, C. S. 1977. Numerical analysis of blood flow in the heart.J. Comp. Phys. 25, 220–252.

    Article  MATH  MathSciNet  Google Scholar 

  • Peskin, C. S. and D. M. McQueen. 1989a. A three-dimensional computational model for blood flow in the heart I.J. Comp. Phys. 81, 372–405.

    Article  MATH  MathSciNet  Google Scholar 

  • Peskin, C. S. and D. M. McQueen. 1989b. A three-dimensional computational model for blood flow in the heart II.J. Comp. Phys. 82, 289–297.

    Article  MATH  MathSciNet  Google Scholar 

  • Phan-Thien, N., T. Tran-Cong and M. Ramia. 1987. A boundary-element analysis of flagellar propulsion.J. Fluid Mech. 184, 533–549.

    Article  Google Scholar 

  • Pozrikidis, C. 1992.Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge Texts in Applied Mathematics (1992).

  • Rothschild, L. 1963. Non-random distribution of bull spermatozoa in a drop of sperm suspension.Nature 198, 1221–1222.

    Article  Google Scholar 

  • Winet, H., G. S. Bernstein and J. Head. 1984. Observations on the response of human spermatozoa to gravity, boundaries and fluid shear.J. Reprod. Fert. 70, 511–523.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fauci, L.J., McDonald, A. Sperm motility in the presence of boundaries. Bltn Mathcal Biology 57, 679–699 (1995). https://doi.org/10.1007/BF02461846

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02461846

Keywords

Navigation