Skip to main content
Log in

Stochastic processes with independent increments for random mappings

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

Using additive functions defined on the combinatorial structure of all mappings of anN set into itself, we define paths in the space\(\mathbb{D}[0,1]\) endowed with the Skorokhod topology. Taking a mapping with equal probability, we get a sequence of random processes. Necessary and sufficient conditions for the weak convergence of this sequence to a stochastic process with independent increments are established. It is shown that the class of such processes contains all possible limits, provided that, on the components of a mapping, the additive functions have values small in average.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Aldous,Exchangeability and Related Topics, Lecture Notes in Math.,1117, Springer, Berlin (1985)

    Google Scholar 

  2. D. J. Aldous and J. Pitman, Brownian bridge asymptotics for random mappingsRandom Structures and Algorithms,5, 487–512 (1994).

    MATH  MathSciNet  Google Scholar 

  3. R. Arratia and S. Tavaré, Limit theorems for combinatorial structures via discrete process approximations,Random Structures and Algorithms,3, 321–345 (1992).

    MATH  MathSciNet  Google Scholar 

  4. R. Arratia, D. Stark, and S. Tavaré, Total variation asymptotics for Poisson process approximations of logarithmic combinatorial assemblies,Ann. Probab.,23, 1347–1388 (1995).

    MATH  MathSciNet  Google Scholar 

  5. G. J. Babu and E. Manstavičius, Brownian motion and random permutations,Sankhyā Ser. A,61(3), 312–327 (1999).

    MATH  Google Scholar 

  6. G. J. Babu and E. Manstavičius, Infinitely divisible limit processes for the Ewens sampling formula (submitted, 1998, 11 p.).

  7. G. J. Babu and E. Manstavičius, Processes with independent increments for the Ewens sampling formula (submitted, 1999, 12 p.).

  8. P. Billingsley,Convergence of Probability Measures, Wiley, New York (1968).

    MATH  Google Scholar 

  9. M. Drmota and M. Soria, Images and preimages in random mappings,SIAM J. Discrete Math.,10, 246–269 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  10. J. C. Hansen, A functional central limit theorem for random mappings,Ann. Probab.,17(1), 317–332 (1989); Correction,Ann. Probab.,19(3), 1393–1396 (1991).

    MATH  MathSciNet  Google Scholar 

  11. B. Harris, A survey of early history of the theory of random mappings, in:Probabilistic Methods in Discrete Mathematics, V. F. Kolchinet al. (Eds), TVP/VSP, Utrecht (1994), pp. 1–22.

    Google Scholar 

  12. J. Kubilius, Probabilistic methods in the theory of numbers,Usp. Mat. Nauk,11, 2(68), 31–66 (1956); translated inAmer. Math. Soc. Transl.,19, 47–85 (1962).

    MATH  Google Scholar 

  13. J. Kubilius,Probabilistic Methods in the Theory of Numbers, Amer. Math. Soc. Transl. of Monographs,11, Providence (1962).

  14. J. Kubilius, Additive arithmetic functions and Brownian motion,Lecture Notes in Math.,550, 335–350 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  15. E. Manstavičius, Arithmetic simulation of stochastic processes,Lith. Math. J.,24(3), 276–285 (1984).

    Article  MATH  Google Scholar 

  16. E. Manstavičius, Additive functions and stochastic processes,Lith. Math. J.,25(1), 52–61 (1985).

    Article  MATH  Google Scholar 

  17. E. Manstavičius, The law of iterated logarithm for random permutations,Lith. Math. J.,38(2), 160–171 (1998).

    Article  MATH  Google Scholar 

  18. E. Manstavičius, A functional limit theorem for random mappings,Transactions of the Lithuanian Math. Soc.,2, Technika, Vilnius (1999), pp. 49–54.

    Google Scholar 

  19. V. V. Petrov,Sums of Independent Random Variables, Springer, New York (1975).

    MATH  Google Scholar 

  20. D. Stark, Explicit limits of total variation distance in approximations of random logarithmic assemblies by related Poisson process,Combin. Probab. Comput.,6, 87–105 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  21. N. M. Timofeev and Kh. Kh. Usmanov, Arithmetic modeling of random processes with independent increments.Dokl. Akad. Nauk Tadzhik. SSR,27, 56–559 (1984).

    MathSciNet  Google Scholar 

  22. N. M. Timofeev and Kh. Kh. Usmanov, On a class of arithmetic models of random processes,Dokl. Akad. Nauk Tadzhik. SSR,29,330–334 (1986).

    MATH  MathSciNet  Google Scholar 

Download references

Authors

Additional information

Partially supported by the Lithuanian State Science and Studies Foundation.

Vilnius University, Naugarduko 24, 2006 Vilnius, Lithuania. Translated from Lietuvos Matematikos Rinkinys, Vol. 39, No. 4, pp. 498–516, October–December, 1999.

Translated by E. Manstavičius

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manstavičius, E. Stochastic processes with independent increments for random mappings. Lith Math J 39, 393–407 (1999). https://doi.org/10.1007/BF02465590

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02465590

Key words

Navigation