Skip to main content
Log in

A general model for the mechanics of saturated-unsaturated porous materials

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

A general predictive model for the mechanical analysis of isothermal and non-isothermal saturated-unsaturated porous materials is presented. The model is developed along the lines of Biot's theory and applies both for high water content and for low to medium water content in the pore space. Due to the similarity of the matrices in both situations, even if the transfer mechanisms are different, a single computer program can handle all of them. Examples belonging to both domains in the isothermal case as well as to heat and mass transfer in deforming porous media are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b :

Body force vector

c :

Coefficient of consolidation

c :

Stress-independent vector definding the creep strain rate

C α :

Specific heat of the α-phase

D T :

Tangential stiffness matrix

g :

Gravity acceleration

h :

Elevation above some datum

k :

Absolute permeability matrix

k :

Relative permeability of the α-phase

R :

Solution ratio of the α-phase

C s :

Specific moisture content

κ:

Coefficient of thermal diffusivity

K α :

Bulk modulus of the α-phase

L :

Differential operator which relates displacements to strains

m :

(111000)T

m T :

Transpose ofm

p :

Pore pressure

q e :

Volumetric outflow of the fluid per unit volume of the solid

q h :

Outflow of heat per unit volume of solid

t :

Time variable

\(\hat t\) :

Dimensionless time parameter

T :

Temperature increase over an equilibrium state

\(\hat t\) :

Boundary traction vector

u :

Displacement vector

V a :

Apparent velocity of the fluid

βα :

Thermal expansion coefficient of the α-phase

ε:

Total strain vector of the soil skeleton

ε0 :

Represents all other strain not directly associated with stress change

εc :

Creep strain

λ:

Thermal conductivity matrix of the soil

μ:

Dynamic viscosity

ρα :

Density of the α-phase

ϕ:

Porosity

g:

Gaseous phase

w:

Water

s:

Solid phase

m:

Moisture

v:

Steam

References

  1. Quenard, D., Laurent, J. P. and Salle, H., ‘Comportement dynamique des matériaux du bâtiment vis-à-vis de l'humidité’, Proceedings of 1st International RILEM Congress: Pore Structure and Materials Properties, Paris, 1987, Vol. 1 (Chapman and Hall, London, 1987) pp. 261–268.

    Google Scholar 

  2. Biot, M. A., ‘General theory of three dimensional consolidation,’J. Appl. Phys. 12 (1941) 155–164.

    Article  Google Scholar 

  3. Idem, ‘Theory of deformation of a porous viscoelastic anisotropic solid,’ibid. 27 (1956) 459–467.

    Article  MathSciNet  Google Scholar 

  4. Narasimhan, T. N. and Witherspoon, P. A., ‘Numerical model for saturated-unsaturated flow in deformable porous media. 1 Theory.’Water Resour. Res. 13 (1977) 657–664.

    Google Scholar 

  5. Safai, N. M. and Pinder, G. F., ‘Vertical and horizontal land deformation in a desaturating porous medium,’Adv. Water Resour. 2 (1979) 19–25.

    Article  Google Scholar 

  6. Schrefler, B. A. and Simoni, L., ‘A unified approach to the analysis of saturated-unsaturated elasto-plastic porous media,’ in Swoboda, G. (ed.), ‘Numerical Methods in Geomechanics,’ Innsbruck, 1988, Vol. 1 (Balkema, Rotterdam, 1988) pp. 205–212.

    Google Scholar 

  7. Philip, J. R. and de Vries, D. A., ‘Moisture movement in porous materials under temperature gradient,’Trans. Amer. Geophys. Un. 39 (2) (1957) 222–231.

    Google Scholar 

  8. Proceedings of International Conference, ‘From Material Science to Construction Material Engineering’ (Chapman and Hall, London, 1987).

  9. Bazant, Z. P. and Najjar, L. N., ‘Nonlinear water diffusion in nonsaturated concrete,’Matér. Constr. 5 (25) (1972) 3–21.

    Article  Google Scholar 

  10. Thomas, H. R., ‘Modelling two-dimensional heat and moisture transfer in unsaturated soils, including gravity effects,’Int. J. Num. Anal. Meth. Geom. 9 (1985) 573–588.

    Article  MATH  Google Scholar 

  11. Roelfstra, P. E., Sadouki, H. and Wittman, F. H., ‘Le béton numérique,’Matér. Constr. 18 (1985) 327–335.

    Google Scholar 

  12. Lewis, R. W., Strada, M. and Comini, G., ‘Drying-induced stress in porous bodies,’Int. J. Num. Meth. Eng. 11 (1977) 1175–1184.

    Article  Google Scholar 

  13. Zienkiewicz, O. C. and Shiomi, T., ‘Dynamic behaviour of saturated porous media; the generalized Biot formulation and its numerical solution,’Int. J. Num. Anal. Meth. Geom. 8 (1984) 71–96.

    Article  MATH  Google Scholar 

  14. Lacy, S. J. and Prevost, J. H., ‘Nonlinear seismic response analysis of earth dams,’Soil Dynam. and Earthq. Engng 6 (1) (1987) 48–63.

    Article  Google Scholar 

  15. Geraminegad, M. and Saxena, S. K., ‘A coupled thermoelastic model for saturated-unsaturated porous media,’Geotech. 36 (4) (1986) 539–550.

    Article  Google Scholar 

  16. Lewis, R. W. and Schrefler, B. A., ‘The Finite Element Method in the Deformation and Consolidation of Porous Media’ (Wiley, London, 1987).

    Google Scholar 

  17. Simoni, L. and Schrefler, B. A. ‘Generalized Biot formulation for the mechanics of saturated-unsaturated porous media, in Atluri, S. N. and Yagawa, G. (eds), ‘Computational Mechanics '88’ (Springer, 1988) 27ii 1–4.

  18. Neuman, S. P., ‘Galerkin approach to saturated-unsaturated flow in porous media,’ in Gallagher, R. H., Oden, T. J., Taylor, C. and Zienkiewicz, O. C. (eds), ‘Finite Elements in Fluids,’ Vol. 1 (Wiley, London, 1975).

    Google Scholar 

  19. Zienkiewicz, O. C., ‘The Finite Element Method’ (McGraw-Hill, 1977).

  20. Roelfstra, P. E. and Wittmann, F. H. ‘Numerical analysis of drying and shrinkage,’ in ‘Autoclaved Aerated Concrete, Moisture Content and Properties’ (Elsevier, The Netherlands, 1982).

    Google Scholar 

  21. Verruijt, A., ‘the theory of consolidaton,’ in Bear, J. and Corapcioglu, Y. (eds), ‘Fundamentals of Transport Phenomena in Porous Media’ (Nijhoff, Dordrecht, 1984).

    Google Scholar 

  22. Schrefler, B. A., ‘A partitioned solution procedure for geothermal reservoir analysis,’Comm. Appl. Num. Meth. 1 (1985) 53–55.

    Article  MATH  Google Scholar 

  23. Lewis, R. W., Roberts, P. J. and Schrefler, B. A., ‘Finite element modelling of two phase heat and fluid flow in porous media,’ to be published.

  24. Contri, L., ‘Distribuzioni caratteristiche di curvatura nei tratti iniziali dei diagrammi tensioni-deformazioni delle malte cementizie e dei calcestruzzi, loro ricostruzione in base a modelli strutturali,’ Rep. 1965, see also Costr. in c.a.,Studi e Rendiconti,6 (1969).

  25. Contri, L., Majorana, C. E. and Schrefler, B. A., ‘A structural multiphase inhomogeneous material model for concrete at early ages,’ in Proceedings of International Conference on Concrete at Early Ages, Paris, Ed. Anciens ENPC, April 1982, pp. 193–198.

  26. Contri, L., ‘Ritiro e deformabilità differita dei conglomerati cementizi nell'interpretazione offerta da un nuovo modello strutturale, Rep. 1969, see also Costr. in c.a.,Studi e Rendiconti,8 (1971) 3–19.

    Google Scholar 

  27. Wittmann, F. H., ‘Deformation of concrete at variable moisture content,’ in Bazant, Z. P. (ed.), ‘Mechanics of Geomaterials,’ Part VII (Wiley, 1985) pp. 425–460.

  28. Majorana, C. E., ‘Numerical simulation of drying and shrinkage of concrete with a multiphase inhomogeneous material model,’ Report. Ist. Scienza e Tecnica delle Costruzioni (Università di Padova, 1986).

  29. Booker, J. R. and Savvidou, C., ‘Consolidation around a heat source,’Int. J. Num. Anal. Meth. Geom. 9 (1985) 173–184.

    Article  Google Scholar 

  30. Schrefler, B. A. and Simoni, L., ‘Nonisothermal consolidation of unbounded porous media using mapped infinite elements,’Com. Appl. Num. Meth. 3 (1987) 445–452.

    Article  MATH  Google Scholar 

  31. Comini, G. and Lewis, R. W., ‘A numerical solution of two-dimensional problems involving heat and mass transfer,’Int. J. Heat Mass Transf. 19 (1976) 1387–1392.

    Article  MATH  Google Scholar 

  32. Lewis, R. W., Morgan, K., Thomas, H. R. and Strada, M., ‘Drying induced stresses in porous bodies—an elastoviscoplastic model,’Comp. Meth. Appl. Mech. Eng. 20 (1979) 291–301.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schrefler, B.A., Simoni, L. & Majorana, C.E. A general model for the mechanics of saturated-unsaturated porous materials. Materials and Structures 22, 323–334 (1989). https://doi.org/10.1007/BF02472501

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02472501

Keywords

Navigation