Skip to main content
Log in

Elastic modulus of the human intact left ventricle—determination and physiological interpretation

  • Published:
Medical and biological engineering Aims and scope Submit manuscript

Abstract

The left ventricle (l.v.) is represented as a shell of muscle whose performance is characterised in terms of the chamber pressure and stress/strain in the ventricular wall; the effective elastic modulus of the l.v. relates these peerformance variables, and hence represents the transfer function of the left ventricular physiological system. A method is presented for indirectly determining the effective modulusE for the left ventricle. The method employs a thick-walled mathematical model of the l.v. having a homogeneous isotropic medium. Instantaneous values ofE are determined for subjects with heart diseases of varied etiologies, in order to assess the responses of the l.v. to chronic overloads of pressure and volume. Resulting values forE are used diagnostically to characterise the physiological state of the l.v. Normal values ofE, at systole, indicate that the strength of contraction exercised by the l.v. is normal, and hence is an indication of the l.v. having adjusted to the heart disease.

Sommaire

Le ventricule gauche (VG) est représenté par une enveloppe musculaire dont la performance est caractérisée par la pression de la chambre et la contrainte et la déformation sur la paroi ventriculaire; le module d'élasticité ventriculaire effectif du VG décrit la relation entre ces variables de la performance et représente donc la fonction du transfer du système physiologique du ventricule gauche. On présente une méthode de détermination indirecte du module effectifE du ventricule gauche. La méthode fait usage d'un modèle mathématique à paroi épaisse du VG et ayant un milieu isotropique homogène. On détermine des valeurs instantanées deE pour des sujets atteints de maladies cardiaques à étiologies variables, de façon à évaluer la réponse du VG aux surcharges chroniques de pression et de volume. Les valeurs résultantes deE sont utilisées diagnostiquement pour caractériser l'état physiologique du VG. Des valeurs normales de,E à la systole indiquent que la force de la contraction exercée par le VG est normale et qu'il s'est donc ajusté à la maladie cardiaque.

Zusammenfassung

Das linke Ventrikel (LV) wird als Muskelschale dargestellt, dessen Leistung durch Kammerdruck und Beanspruchung der Ventrikulärwand beschrieben wird. Das effektive elastische Modul des LV bringt diese Leistungsvariablen aufeindander in Bezug und stellt daher die Ubertragungsfunktion des linken physiologischen Ventrikelsystems dar. Es wird ein Verfahren zur indirekten Bestimmung des effektiven Moduls (E) für das linke Ventrikel dargestellt. Das Verfahren verwendet das starkwandige mathematische Modell eines LV mit einem homogenen isotropen Medium. Sofortige E-Werte werden für Fälle mit Herzkrankheiten verschiedener Ursachen betimmt, um die Reaktion des LV auf chronische Überbelastung durch Druck und Volumen zu beaurteilen. Die sich für E ergebenden Werte werden diagnostisch dazu verwendent, den physiologischen Zustand des LV zu bestimmen. Normale Werte für E bei Systole bedeuten, daß die vom LV ausgeführte Kontraktion normal stark ist, was bedeutet, daß sich das LV auf die Herzkrankheit eingestellt hat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

L.V.:

left ventricle

L, W, H :

maximum length, calculated width and measured wall thickness of the left ventricular chamber—data quantities

P :

pressure in the cavity of the left ventricle

d 1 :

W/2, for the analytic model

d 2 :

(W/2)+H, for the analytic model

t :

time during a cardiac cycle

(x, y, z):

Cartesian co-ordinates

(r, y, w):

cylindrical co-ordinate system withy as the axis of rotation

\(\bar x,\bar r,\bar y\) :

x/a, r/a, y/a

a :

half the length along which point dilatations are distributed

R :

ratio of\(\bar y\) to\(\bar r\) intercept of a stress trajectory

(\(\bar r_1 ,\bar y_1 \)) and (\(\bar r_2 ,\bar y_2 \)):

intercepts of the stress trajectories of the inner and outer surfaces of the geometrically similar model with the\(\bar r\) and\(\bar y\) axes

R1,R2:

\(\left( {\bar y_1 /\bar r_1 } \right),\left( {\bar y_2 /\bar r_2 } \right)\), shape parameters of the model

σ1,ε1:

stress and strain for line dilatation

σ2,ε2:

stress and strain for a uniform hydrostatic stress system

B :

strength or intensity factor for a uniform hydrostatic stress system (= magnitude of the uniform hydrostatic stress)

C :

strength or intensity factor for a line dilatation system

E :

instantaneous effective modulus of the left ventricle

v :

Poisson's ratio

References

  • Anliker, M. (1968) Direct measurements of the distensibility of heart ventricles. Presented at the 2nd Annual Workshop of the Basic Science Council of the American Heart Association. Ames Research Centre. Moffett Field, Calif., 4–8th Aug.

  • Braunwald, E. andRoss, J., Jun. (1963) The ventricular end-diastolic pressure, Appraisal of its value in the recognition of ventricular failure in man.Am. J. Med.34, 147.

    Article  Google Scholar 

  • Braunwald, E., Ross, J. Jun andSonneblick, E. H. (1967) Mechanisms of contraction of the normal and failing heart.N. Engl. J. Med.277, 794.

    Article  Google Scholar 

  • Burnell, I. L., Grant, C. andGreene, D. G. (1965) Left ventricular function derived from the pressure-volume diagram.Amer. J. Med.39, 881.

    Article  Google Scholar 

  • Burch, G. E., Ray, C. J. andCronvich, S. A. (1952) Certain mechanical peculiarities of the human cardiac pump in normal and diseased states.Circ.5, 504.

    Google Scholar 

  • Burton, A. C. (1957) The importance of the shape and size of the heart.Am. Heart J.54, 801.

    Article  MathSciNet  Google Scholar 

  • Chapman, C. B., Baker, O. andMitchell, J. H. (1959) Left ventricular function at rest and during exercise.J. Clin. Invest.38, 1202.

    Google Scholar 

  • Cohn, K., Sandler, H. andHancock, E. W. (1967) The mechanism of pulsus alternas.Circ.36, 372.

    Google Scholar 

  • Coon, G. W. andSandler, H. (1967) Ultraminiature manometer tipped cardiac catheter.20th Annual Conf. Eng. Med. and Biol.9, 22.2.

    Google Scholar 

  • Corson, W. A., Dodge H. T., Backley, C. E. andSandler, H. (1963) Compliance of the diastolic left ventricle in man.Clin. Res.11, 73.

    Google Scholar 

  • Dodge, H. T., Sandler, H., Ballew, D. H. andLoard, J. D. Jun (1960) The use of biplane angiocardiography for the measurement of left ventricular volume in man.Am. Heart J.60, 762.

    Article  Google Scholar 

  • Dodge, H. T., Sandler, H., Baxley, W. A. andHawley, R. R. (1966) Usefulness and limitations of radiographic methods for determining left ventricular volume.Am. J. Cardiol.18, 10.

    Article  Google Scholar 

  • Feigl E. O. andFry, D. L. (1964) Myocardial mural thickness during the cardiac cycle.Circ. Res.14, 541.

    Google Scholar 

  • Ghista, D. N. andSandler, H. (1969) Analytic model for the shape and forces in the left ventricle.J. Biomech.2, pp. 35–47.

    Article  Google Scholar 

  • Ghista, D. N. andVayo, H. W. (1969) The time-varying elastic properties of the left ventricular muscle.Bull. Math. Biophys.31, 75.

    MATH  Google Scholar 

  • Ghista, D. N. andSandler, H. (1970) Indirect determination of the oxygen utilization of the human left ventricle.J. Biomech.3, pp. 161–174.

    Article  Google Scholar 

  • Ghista, D. N. andMirsky, I. (1974) Assessment of cardiac function; a mathematical and clinical evaluation. Pt. 3—Left ventricular stress and vibration analysis.Automedica (in press).

  • Grant, C., Greene, D. G. andBrunnel, I. L. (1965) Left ventricular enlargement and hypertrophy.Am. J. Med.39, 895.

    Article  Google Scholar 

  • Hawthorne, E. W. (1961) Instantaneous dimensional changes of the left ventricle in dogs.Circ. Res.9, 110.

    Google Scholar 

  • Hawthorne, E. W. (1966) Dynamic geometry of the left ventricle.Am. J. Cardiol.18, 566.

    Article  Google Scholar 

  • Hood, W. P., Jun., Rackley, C. E. andRolett, E. L. (1968) Wall stress in the normal and hypertrophied human left ventricle.Am. J. Card.22, 55.

    Google Scholar 

  • Jewell, B. R. andBlinks, J. R. (1968) Drugs and the mechanical properties of heart muscle.Ann. Rev. Pharm.8, 113.

    Article  Google Scholar 

  • Lundin, G. (1944) Mechanical properties of cardiac muscle.Acta. Physiol. Scandinav.7 Suppl. 20, 7.

    Google Scholar 

  • Love, A. E. H. (1944)A treatise on the mathematical theory of elasticity. 4th Ed., Dover Publications, New York.

    MATH  Google Scholar 

  • Mirsky, I. (1969) Left ventricular stress in the intact human heart.Biophys. J.9, 189.

    Article  Google Scholar 

  • Mirsky, I. andGhista, D. N. (1974) Assessment of cardiac function; a mathematical and clinical evaluation. Pt. 1-Force-velocity analyses of isolated and intact heart muscle.Automedica,1.

  • Rackley, C. E., Behar, V. S., Walen, R. E. andMcIntosh, H. D. (1967). Biplane cineangiographic determinations of left ventricle function: Pressurevolume relationships.Am. Heart J.74, 766.

    Article  Google Scholar 

  • Rushmer, R. F. andThal, N. (1951) Mechanics of ventricular contraction: cinefluorographic study.Circ.4, 219.

    Google Scholar 

  • Rushmer, R. F. (1955) Length-circumference relations in the left ventricle.Circ. Res.3, 639.

    Google Scholar 

  • Sandler, H. andDodge, H. T. (1963) Left ventricular tension and stress in man.Circ. Res.13, 91.

    Google Scholar 

  • Sandler, H. andDodge, H. T. (1968) Use of single plane angiocardiograms for the calculation of left ventricular volume in man.Am. Heart J.75, 325.

    Article  Google Scholar 

  • Sonnenblick, E. H. (1962) Force-velocity relations in mammalian heart muscle.Am. J. Physiol.202, 931.

    Google Scholar 

  • Wong, A. Y. K. andRautanharju, P. M. (1968) Stress distribution within the left ventricular wall approximated as a thick ellipsoidal shell.Am. Heart J.75, 649.

    Article  Google Scholar 

  • Woods, R. H. (1892) A few applications of a physical theorem to membranes in the human body in a state of tension.J. Anat. Physiol.26, 362.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghista, D.N., Vayo, W.H. & Sandler, H. Elastic modulus of the human intact left ventricle—determination and physiological interpretation. Med. & biol. Engng. 13, 151–161 (1975). https://doi.org/10.1007/BF02477722

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02477722

Keywords

Navigation