Skip to main content
Log in

Determination of pore-size distribution from freezing-point depression

  • Published:
Matériaux et Construction Aims and scope Submit manuscript

Abstract

By utilising the effect of interfacial curvature on the freezing-point of liquids confined in capillaries, it is in principle possible to determine a pore-size distribution, from the curve of freezing-point against volume frozen. The method is formally similar to capillary condensation methods based on the Kelvin equation. Suitable experimental techniques are described. A comparison with the results of mercury porosimetry on a sample of brick shows reasonable agreement.

Résumé

L’effet de la courbure interfaciale sur le point de congélation de liquides retenus dans des capillaires permet, en principe, de déterminer une distribution du diamètre des pores, d’après la courbe point de congélation/volume congelé. On procède à un examen des bases théoriques et l’on montre qu’il existe une similitude formelle avec les méthodes par condensation capillaire qui reposent sur l’équation de Kelvin. Quelques incertitudes théoriques subsistent, qui dépendent principalement du modèle défini adopté pour représenter les configurations de la glace, de l’eau et de l’air dans les pores; mais la comparaison entre les résultats expérimentaux et ceux que l’on peut déduire de la théorie permet de les éliminer. On examine également les effets des sels dissous et de l’hystérésis entre la fusion et la congélation. On décrit des techniques expérimentales appropriées, tant dilatométriques que calorimétriques. Les résultats s’accordent assez bien avec ceux obtenus sur un échantillon de brique par la porosimétrie au mercure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bigg E.K.The supercooling of water. Proc. Phys. Soc., London, B 66 (1953), 688.

    Article  Google Scholar 

  2. Blachere J.R., Young J.E.The freezing point of water in porous glass. J. Amer. Ceram Soc., 55 (1972), 306.

    Article  Google Scholar 

  3. Croney D., Coleman J.D., Bridge P.M.The suction of moisture held in soil and other porous material, Road Res. Techn. Paper No. 24, London, Her Majesty’s Stat. Office, 1952.

    Google Scholar 

  4. Feldman R.F.Length change-adsorption relations for the water-porous glass system to −40°C. Canad. J. of Chem., 48 [2] (1970), 287.

    Article  Google Scholar 

  5. Gregg S.J., Sing K.S.W.Adsorption, surface area and porosity. Academic Press, London, 1967.

    Google Scholar 

  6. Anonymous.—Handbook of Chemistry and Physics. 45th Edition 1964–65. The Chemical Rubber Co.

  7. Helmuth R.A.Capillary size-restrictions on ice-formation in hardened Portland cement-pastes. Proc. Vol. II, 4th, Int. Symp. Chem. of Cement, Washington, D.C. (1960), 855.

  8. Hesstvedt E.The interfacial energy ice/water. Norwegian Geotechnical Institute, publ. No. 56, Oslo, 1964, 7.

  9. Kubelka P.Über den Schnelzpunkt in sehr engen kapillaren. Ztschr. Elektrochem. Bd. 38 [8 a], (1932), 611.

    Google Scholar 

  10. Litvan G.G.Phase transitions of adsorbates: IV Mechanism of frost action in hardened cement paste. J. Amer. Ceram. Soc., 55 (1972), 38.

    Article  Google Scholar 

  11. Lœwenstein K.L.Glass systems. Composite materials, pp. 129–220. Elsevier Publ. Comp., Amsterdam/London/New York (1966).

    Google Scholar 

  12. Powers T.C., Helmuth R.A.Theory of volume changes in hardened Portland cement-paste during freezing. HRB. Proceedings 32 (1953), 285.

    Google Scholar 

  13. Powers T.C., Brownyard T.L.Physical properties of cement-paste. Res. Labs. Portl. Cem. Ass. Bulletin, 22, Chicago, 1948.

  14. Powers T.C., Copeland L.E., Hayes J.C., Mann H.M.Permeability of Portland cement-paste. Proc. Amer. Concr. Inst., 51 (1954–55), 285.

    Google Scholar 

  15. Puri B.R., Sharma L.R., Lakhanpal K.L.Freezing-point of water held in porous bodies at different vapour pressures. J. Phys. Chem., 58 (1954), 289.

    Article  Google Scholar 

  16. Schofield R.K.The pF of water in soil, 3 rd. Int. Congr. Soil. Sci., 2 (1935), 37; 3 (1935), 182.

    Google Scholar 

  17. Schofield R.K., Da Costa J.V.B.The measurements of pF in soil by freezing-point. J. Agric. Sci., 28 (1938), 645.

    Article  Google Scholar 

  18. Sill R.C., Skapski A.S.Method for the determination of the surface tension of solids from their melting points in thin wedges. J. Chem. Phys. 24 (1956), 644.

    Article  Google Scholar 

  19. Vos B.H., Tammes E.Moisture and moisture transfer in porous materials. Report No. BI-69-96. TNO Delft, 1969.

  20. Vuorinen J.On use of dilation factor and degree of saturation in testing concrete for frost-resistance. Nordisk Betong, 1970: 1, 37.

  21. Washburn E.W.The vapour pressure of ice and of water below the freezing point. Monthly Weather Rev. (Oct. 1924), 488.

  22. Wheeler A.Reaction rates and selectivity in catalyst pores. Catalysis Part II. Ed. P.H. Emmett. Rheinhold Publ. Corp. N.Y. 1955, 105.

    Google Scholar 

  23. Williams P.J.Properties and behaviour of freezing soils. Norwegian Geotechnical Institute. Publ. No. 72, Oslo, 1967.

  24. Winslow D.N., Diamond S.A mercury porosimetry study of the evaluation of porosity in Portland cement. J. of Materials, Vol. 5, [3] (1970), 564.

    Google Scholar 

  25. Sneck T., Oinonen H.Measurements of pore size distribution of porous materials. The State Inst. for Techn. Res., Finland, Publ. No. 155, Helsinki (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fagerlund, G. Determination of pore-size distribution from freezing-point depression. Mat. Constr. 6, 215–225 (1973). https://doi.org/10.1007/BF02479036

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02479036

Keywords

Navigation