Skip to main content
Log in

Investigative methods for the characterisation of historic mortars—Part 1: Mineralogical characterisation

  • RILEM Technical Committees
  • RILEM TC 167-COM: ‘Characterisation of Old Mortars with Respect to their Repair’
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The mineralogical characterisation of historic mortars is performed for a number of reasons related to the conservation of traditional structures. The reasons for analysis and the questions posed during the conservation, repair or restoration of an old building determine the analysis methods that will be chosen. A range of mineralogical characterisation methods is available for the study of historic masonry mortars. These include X-ray Diffraction (XRD), Optical Microscopy, Scanning Electron Microscopy (SEM), Thermal and Infra-Red methods. Sample preparation is important; adequate separation of binder from aggregate is required for instrumental as opposed to microscopic investigation methods. An ordered scheme of analysis can be developed and is presented in flowchart form. It is difficult, and perhaps unwise, to analyse a mortar with only one method of characterisation. Corroboration of evidence of identification and quantification for mineralogical composition is best supported by a combination of methods, including chemical analysis methods. All methods of characterisation require qualified and experienced people to cary out the analyses.

Résumé

La caractérisation minéralogique des mortiers historiques est exécutée pour des raisons différentes qui sont liées à la conservation des constructions traditionnelles. Les raisons de l’analyse et les questions posées lors de la conservation, la réparation ou la restauration d’une construction historique déterminent les méthodes d’analyse choisies. Une gamme de méthodes de caractérisation minéralogique est disponible pour l’étude des mortiers historiques de maçonnerie. Celles-ci comprennent la diffractométrie par rayon X (DRX), la microscopie optique, la microscopie électronique de balayage (MEB), les méthodes thermiques et infrarouge. La préparation de l’échantillon est importante: la séparation adéquate du liant et du granulat est obligatoire pour des méthodes instrumentales (comme les analyses chimiques), ce qui n’est pas le cas pour les méthodes d’investigation microscopiques. Il est difficile, et peut-être peu judicieux, d’analyser un mortier avec une seule méthode de caractérisation. Un schéma systématique relatif aux analyses à exécuter peut être développé et est présenté sous forme d’organigramme. Toutes les méthodes de caractérisation exigent du personnel qualifié et expérimenté pour exécuter les analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Knöfel, D. and Schubert, P. Handbuch, P., ‘Handbook, Mortars and Stone Replacement Materials in Restoration’ (Ernst & Sohn, Berlin, 1993) [in German].

    Google Scholar 

  2. Middendorf, B., ‘Characterisation of historic mortars from brick masonry and development of water resistant mortars based on gypsum’, unpublished PhD-thesis, University Siegen, Germany, 1994 [in German].

    Google Scholar 

  3. Gödicke-Dettmering, T. and Strübel, G., ‘Mineralogical and technological properties of hydraulic lime as binder for mortars in restoration’,Giessener Geologische Schriften 56 (1996) 131–154 [in German].

    Google Scholar 

  4. Callebaut, K., Elsen, J., Van Balen, K. and Viaene, W., ‘19th century hydraulic restoration mortars in the Saint-Michael’s church (Leuven, Belgium): natural hydraulic lime or cement?’,Cement and Concrete Research 31(3) (2001) 397–403.

    Article  Google Scholar 

  5. Wisser, S. and Knöfel, D., ‘Analyses of historic plaster and mortar, Part I: Analytical methods’,Bautenschutz+ Bausanierung 10 (1987) 124–126 [in German].

    Google Scholar 

  6. Wisser, S. and Knöfel, D., ‘see [5], Part II: Analyses and results’,Bautenschutz +Bausanierung 11 (1988): 163–171 [in German].

    Google Scholar 

  7. Wisser, S., ‘Historic and modern mortars connected with natural stones: chemical, mineralogical and technological properties’ (Freiburg, Breisgau, 1989) [in German].

    Google Scholar 

  8. Duttlinger, W., ‘Deterioration of natural stones caused by salts: Analyses of buildings and comparable results of field studies’, unpublished PhD-thesis, University Freiburg, Germany, 1990) [in German].

    Google Scholar 

  9. Papayianni, I., ‘Technology of mortars and bricks used in Ottoman monuments of Thessaloniki’, in Int. Conf. on Studies in Ancient Structures, Istanbul, 1997, 245–258.

  10. Middendorf, B. and Knöfel, D., ‘Characterisation of historic mortars from secular and religious buildings in Germany and the Netherlands’, in ‘Conservation of Historic Brick Structures: Case Studies and Reports of Research’, Editors: N.S. Baeret al. (Donhead Publishing Ltd, England, 1998) ISBN 1 873394 34 9.

    Google Scholar 

  11. Middendorf, B. and Knöfel, D., ‘Gypsum and lime mortars of historic German brick buildings: analytical results as well as requirements for adapted restoration material’, in ‘Conservation of Historic Brick Structures: Case Studies and Reports of Research’, Editors: N.S. Baeret al. (Donhead Publishing Ltd, England, 1998) ISBN 1 873394 34 9.

    Google Scholar 

  12. Callebaut, K., ‘Characterisation of historical lime mortars in Belgium: implications for restoration mortars’ (Unpublished PhD-thesis, K.U. Leuven, 2000).

  13. Furlan, V. and Pancella, R., ‘Examen microscopique en lumière réfléchie de ciments, bétons et mortiers’,Chantiers/Suisse 13 (1982) 25–30.

    Google Scholar 

  14. St. John, D.A., Poole, A.B. and Sims, I., ‘Concrete Petrography. A handbook of investigative techniques’ (Arnold Publishers, London, 1998) 127–133.

    Google Scholar 

  15. Callebaut, K., Viaene, W., Van Balen, K. and Ottenburgs, R., ‘Petrographical, mineralogical and chemical investigation of 17th and 19th century lime mortars in the St.-Michael’s church (Leuven, Belgium)’,Internationale Zeitschrift für Bauinstandsetzungen und Denkmalpflege 5 (4) (1999) 523–542.

    Google Scholar 

  16. Bakolas, A., Biscontin, G., Moropoulou, A. and Zendri, E., ‘Characterization of the lumps in the mortars of historic masonry’,Thermochimica Acta 269/270 (1995) 809–816

    Article  Google Scholar 

  17. Lindqvist, J.E. and Sandström, M., ‘Recommendations of RILEM TC 167-COM: Characterization of old mortars— Quantitative analysis of historical mortars using optical microscopy’,Mater. Struct. 33 (2000) 612–617.

    Article  Google Scholar 

  18. Recommendations of RILEM TC 167-COM: ‘Characterization of old mortars’—COM-C1: Assessment of mix proportions in historical mortars using quantitative optical microscopy,Mater. Struct. 34 (2001) 387–388.

    Google Scholar 

  19. Larbi, J.A. and van Hees, R.P.J., ‘Quantitative microscopical procedure for characterisation mortars in historical buildings’, Proceedings 14 (Internationale Baustofftagung, ibausil, Weimar, 2000) 1.1051–1.1060.

  20. Stefanidou, M., ‘Estimation of porosity by using different techniques’, 8th Euroseminar on Microscopy Applied to Building Materials, Athens (2001) 619–624.

  21. Diamond, S., ‘Identification of hydrated cement constituents using a scanning electron microscope—energy dispersive X-ray spectrometer combination’,Cement and Concrete Research 2 (1972) 617–632.

    Article  Google Scholar 

  22. Lewin, S.Z., ‘X-ray diffraction and scanning electron microscope analysis of conventional mortars’, in ‘Mortars, Cements and Grouts Used in the Conservation of Historic Buildings’, Symposium, Rome, ICCROM (1981) 101–132.

  23. Middendorf, B., Böttger, K.G. and Knöfel, D., ‘SEM-analyses of influences of different retarders and additives on the binder hardening of cement- and gypsum mortars’,Beitr. Elektronenmikroskop. Direktabb. Oberfl. 25 (1992) 215–222 [in German].

    Google Scholar 

  24. Adams, J.E.A. and Kneller, W.A., ‘Thermal analysis (TA) of medieval mortars from Gothic cathedrals of France’, in the proceedings of ‘The Engineering Geology of Ancient Works, Monuments and Historical Sites-Preservation and Protection’, Athens Greece, September 1988, P.G. Marinos and G.C. Koukis, eds. (A.A. Balkema, publisher, Rotterdam, The Netherlands, 1988) 1019–1026.

    Google Scholar 

  25. Moropouloou, A., Bakolas, A. and Bisbikou, K., ‘Characterisation of ancient, Byzantine and later historic mortars by thermal and x-ray diffraction techniques’,Thermochimica Acta 269/270 (1995) 779–795.

    Article  Google Scholar 

  26. Willard, H.H.et al., ‘Instrumental Methods of Analysis’ (Litton Educational Publishing, California, USA, 1981).

    Google Scholar 

  27. Newton, R.G. and Sharp, J.H., ‘An investigation of the chemical constituents of some renaissance plasters’,Studies in Conservation 32 (1987) 163–175.

    Article  Google Scholar 

  28. Ellis, P.R., ‘Analysis of mortars by differential thermal analysis’, in ‘Historic Mortars: Characteristics and Tests’, Bartos, P., Groot, C. and Hughes, J.J. (eds.), RILEM International Workshop, Paisley, PRO 12 (RILEM Publications, France, 2000) 133–147.

    Google Scholar 

  29. Paama, L., Pitkänen, I., Rönkkömäki, H. and Permamäki, P., ‘Thermal and infrared spectroscopic characterization of historical mortars’,Thermochimica Acta 320 (1998)

  30. Taylor, H.F.W., ‘Cement Chemistry’, 2nd Edition (Thomas Telford Publishing, London, 1997).

    Google Scholar 

  31. Moropouloou, A., Bakolas, A., Michailidis, P., Chronopoulos, M. and Spanos, Ch., ‘Traditional technologies in Crete providing mortars with effective mechanical properties’,Structural Studies of Historical Buildings Traditional Technologies 1 (50) (1995) 151–161.

    Google Scholar 

  32. Moropoulou, A., Bakolas, A., Moundoulas, P. and Camak, A.S., ‘Compatible restoration mortars for Hagia Sophia earthquake protection’, Earthquake Resistant Engineering Structures, Compatible Restoration, Ch. 78 (1999) 522–531.

  33. Moropoulou, A., Bakolas, A. and Bisbikou, K., ‘Investigation of the technology of historic mortars’,Journal of Cultural Heritage 1 (2000) 45–58.

    Article  Google Scholar 

  34. Moropoulou, A., Bakolas, A. and Bisbikou, K., ‘Physicochemical adhesion and cohesion bonds in joint mortars imparting durability to the historic structures’,Construction and Building Materials 14 (2000) 35–46.

    Article  Google Scholar 

  35. Bakolas, A., Biscontin, G., Contardi, V., Franceschi, E., Moropoulou, A., Palazzi, D. and Zendri, E., ‘Thermoanalytical research on traditional mortars from Venice’,Thermochimica Acta 269/270 (1995b) 817–828.

    Article  Google Scholar 

  36. Bakolas, A., Biscontin, G., Moropoulou, A. and Zendri, E., ‘Characterization of structural Byzantine mortars by thermogravimetric analysis’,Thermochimica Acta 321 (1998) 151–160.

    Article  Google Scholar 

  37. Hakanen, E. and Koskikallio, J., ‘Analysis of aragonite and calcite in precipitated calcium carbonate by x-ray diffraction and infrared spectroscopic methods’,Finn. Chem. Lett, Pt 3–4 (1982) 34–37.

    Google Scholar 

  38. Featherstone, J.D.B., Pearson, S. and Le Geros, R.Z., ‘An infrared method for quantification of carbonate in carbonated apatites’,Caries Research 18 (1984) 63–66.

    Article  Google Scholar 

  39. Bruni, S., Cariati, F., Fermo, P., Pozzi, A. and Toniolo, L., ‘Characterization of ancient magnesian mortars coming from northern Italy’,Thermochimica Acta 321 (1998) 161–165.

    Article  Google Scholar 

  40. Luxán, M.P., Dorrego, F. and Laborde, A. ‘Ancient gypsum mortars from St. Engracia (Zaragoza, Spain): Characterization. Identification of additives and treatments’,Cement and Concrete Research 25 (8) (1995) 1755–1765.

    Article  Google Scholar 

  41. Doménech Carbó, M.T., Bosch Reig, F., Gimeno Adelantado, J.V. and Periz Martínez, V., ‘Fourier transform infrared spectroscopy and the analytical study of works of art for purposes of diagnosis and conservation’,Analytica Chimica Acta 330 (1996) 207–215.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

TC Membership—Chairman: Caspar Groot, The Netherlands;Secretary: Geoff Ashall, United Kingdom;Members: Giulia Baronio, Italy, Peter Bartos, United Kingdom; Luigia Binda, Italy; Jan Elsen, Belgium; John Hughes, United Kingdom; Jan Erik Lindqvist, Sweden; Paul Maurenbrecher, Canada; Ioanna Papayianni, Greece; Margaret Thomson, USA; Koen Van Balen, Belgium; Rob Van Hees, The Netherlands; AlfWaldum, Norway.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Middendorf, B., Hughes, J.J., Callebaut, K. et al. Investigative methods for the characterisation of historic mortars—Part 1: Mineralogical characterisation. Mat. Struct. 38, 761–769 (2005). https://doi.org/10.1007/BF02479289

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02479289

Keywords

Navigation