Skip to main content
Log in

Fracture processes of hybrid fiber-reinforced mortar

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Subregion Scanning Computer Vision (SSCV), a digital image based method for measuring surface deformation is used to examine the role of the fibers in the fracture process of mortars reinforced with hybrid blends of microfiber (less than 22 μm in diameter) and macrofiber (500 μm in diameter). Closely-spaced microfibers interact with cracks at the microstructural level and hamper the widening of coalesced microcracks, thus encouraging the growth of multiple cracks. The microfibers improved pre-peak mechanical performance and strength by delaying the formation of a through-specimen macrocrack. Macrofibers were most effective at bridging macrocracks and imparting ductility to the composite due to their geometry and greater length. Compared to mortar reinforced with a single fiber type, an increase in strength and toughness was seen with a blend of steel macrofibers and either steel or PVA microfibers. Finally, based on the crack topography observed, the reduction in water permeability of cracked mortar achieved with hybrid fiber-reinforcement, measured directly in a parallel study, was governed by multiple crack development.

Résumé

La visualisation assistée par ordinateur (en anglais Subregion Scanning Computer Vision (SSCV), méthode basée sur les images numériques pour mesurer les déformations de surface, est utilisée ici pour examiner les processus de fissuration de mortiers de ciment renforcés à l’aide de mélanges hybrides de fibres: microfibres (diamètre inférieur à 22μm) et macrofibres (diamètre supérieur à 500μm). Les microfibres faiblement espacées interagissent avec les microfissures et rendent difficile l’élargissement de celles-ci et leur éventuelle union en fissures plus importantes. Ces microfibres ont amélioré les performances mécaniques et la résistance du mortier en deçà de la contrainte de rupture en retardant l’apparition de macrofissures traversant l’ensemble de l’échantillon.

Les macrofibres ont été les plus efficaces pour «coudre» les macrofissures tout en conférant une ductilité accrue au composite en raison de leur géométrie et de leur longueur plus importantes. Par comparaison avec des mortiers renforcés avec un seul type de fibre, ceux renforcés avec un mélange de macrofibres en acier et microfibres en alcool polyvinylique (PVA) ont révélé une résistance et une robustesse accrues.

Le renforcement avec un mélange hybride de fibres a permis aussi d’observer une diminution de la perméabilité du mortier fissuré. Cette diminution de perméabilité est due au développement d’une fissuration multiple par opposition a des microfissures qui se transforment en macrofissures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bentur, A., ‘Fiber-reinforced cementitious materials’, in ‘Material Science of Concrete’, J.P. Skalny, (ed.), (The American Ceramic Society, Westerville, Ohio, 1989) 223–285.

    Google Scholar 

  2. Balaguru, P.N. and Shah, S.P., ‘Fiber-Reinforced Cement Composites’, (McGraw-Hill, Inc., Singapore, 1992).

    Google Scholar 

  3. Li, V.C. and Maalej, M., ‘Toughening in cement based composites. Part I: Cement, mortar and concrete’,Cement and Concrete Composites 18 (1996) 223–237.

    Article  Google Scholar 

  4. Karihaloo, B.L. and Wang, J., ‘Micromechanics of fiber-reinforced cementitious composites’,Advanced Engineering Mechanics 2 (11) (2000) 726–32.

    Article  Google Scholar 

  5. Betterman, L.R., Ouyang, C. and Shah, S.P., ‘Fiber-matrix interaction in microfiber-reinforced mortar’,Advanced Cement Based Materials 2 (1995) 53–61.

    Google Scholar 

  6. Mobasher, B., Stang, H. and Shah, S.P., ‘Microcracking in fiber reinforced concrete’,Cement and Concrete Research,20 (1990) 665–76.

    Article  Google Scholar 

  7. Banthia, N., Moncef, A., Chokri, K. and Sheng, J., ‘Microfiber reinforced cement composites. I. Uniaxial tensile response’,Canadian Journal of Civil Engineering 21 (1994) 999–1011.

    Article  Google Scholar 

  8. Tjiptobroto, P. and Hansen, W., ‘Tensile strain hardening and multiple cracking in high-performance cement-based composites containing discontinuous fibers’,ACI Materials Journal 90 (1) (1993) 16–25.

    Google Scholar 

  9. Bentur, A. and Mindess, S., ‘Fiber Reinforced Cementitious Composites’. (Elsevier Applied Science, U.K., 1990).

    Google Scholar 

  10. Banthia, N. and Sheng, J., ‘Micro-reinforced cementitious materials’, in ‘Fiber Reinforced Cementitious Materials’, MRS Symposium Proc. Vol. 211, Mindess, S. and Skalny, J. (eds.), (MRS, Boston, Mass., 1990) 25–32.

    Google Scholar 

  11. Mobasher, B. and Li, C.Y., ‘Mechanical properties of hybrid cement-based composites’,ACI Materials Journal 93 (3) (1996) 284–92.

    Google Scholar 

  12. Qian, C.X. and Stroeven, P., ‘Development of hybrid polypropylene-steel fiber-reinforced concrete’,Cement and Concrete Research,30 (200) 63–9.

  13. Mobasher, B., Castro-Montero, A. and Shah, S.P., ‘A study of fiber-reinforced cement-based composites using laser holographic interferometry’,Experimental Mechanics 30 (3) (1990) 286–94.

    Article  Google Scholar 

  14. Jia, Z. and Shah, S.P., ‘Two-dimensional electronic-specklepattern interferometry and concrete fracture processes’,Experimental Mechanics 34 (3) (1994) 262–70.

    Article  Google Scholar 

  15. RILEM, ‘Determination of fracture parameters (Klc s and CTODc) of plain concrete using three-point bend tests’, Draft recommendation, TC 89-FMT Fracture Mechanics of Concrete-Test Methods,Material and Structures 23 (1991) 457–60.

    Google Scholar 

  16. Hillerborg, A., ‘Stability problems in fracture mechanics testing’, in ‘Fracture of Concrete and Rock: Recent Developments’, Shah, S.P., Swartz, S.E. and Barr, B. (eds.), (Elsevier Science Publishing, Co., New York, NY, 1989) 369–78.

    Google Scholar 

  17. van Mier, J.G.M. and Schlangen, E., ‘On the stability of softening systems’, in ‘Fracture of Concrete and Rock: Recent Developments’, Shah, S.P., Swartz, S.E. and Barr, B. (eds.), (Elsevier Science Publishing, Co., New York, NY, 1989) 387–97.

    Google Scholar 

  18. Chu, T.C., Ranson, W.F., Sutton, M.A. and Peters, W.H., ‘Applications of digital image correlation techniques to experimental mechanics’,Experimental Mechanics 25 (3) (1985) 232–44.

    Article  Google Scholar 

  19. Pratt, W.K., ‘Digital Image Processing’, 2nd edition. (John Wiley & Sons, Inc., New York, 1991).

    MATH  Google Scholar 

  20. Choi, S. and Shah, S.P., ‘Measurement of deformations on concrete subjected to compression using image correlation’,Experimental Mechanics 37 (3) (1997) 307–13.

    Article  Google Scholar 

  21. Han, G., Sutton, M.A. and Choa, Y.J., ‘A study of stationary crack-tip deformation fields in thin sheets by computer vision’,Experimental Mechanics 34 (2) (1994) 125–40.

    Article  Google Scholar 

  22. Choi, S. and Shah, S.P., ‘Propagation of microcracks in concrete studied with Subregion Scanning Computer Vision (SSCV)’,ACI Materials Journal 96 (2) (1999) 255–60.

    Google Scholar 

  23. Lawler, J.S., ‘Hybrid fiber-reinforcement in mortar and concrete’, Ph.D. Thesis, (Northwestern University, Evanston, IL. 2001)

    Google Scholar 

  24. Lawler, J.S., Zampini, D. and Shah, S.P., ‘Permeability of cracked hybrid fiber-reinforced mortar under load’,ACI Materials Journal 99 (4) (2002) 379–85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editorial Note Prof. Dr. Surendra P. Shah is a RILEM Senior Member and participates in RILEM TCs 162-TDF ‘Test and design methods for steel fibre reinforced concrete’, ATC ‘Advanced testing of cement-based materials during setting and hardening’ and SOC ‘Experimental determination of the stress-crack opening curve for concrete in tension’. Prof. Shah is a member of the Bureau of RILEM as well as the Editor-in-Chief ofMaterials and Structures. ACBM Center (Northwestern University) is a RILEM Titular Member.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawler, J.S., Wilhelm, T., Zampini, D. et al. Fracture processes of hybrid fiber-reinforced mortar. Mat. Struct. 36, 197–208 (2003). https://doi.org/10.1007/BF02479558

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02479558

Keywords

Navigation