Skip to main content
Log in

Predicting the volume instability of hydrated cement systems upon freezing using poro-mechanics and local phase equilibria

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The present paper presents a detailed description of a model elaborated to predict the behavior of hydrated cement systems subjected to sub-freezing temperatures. The model was developed within the framework of poro-mechanics and accounts for local thermodynamic equilibrium between various phases. Ice formation is described at the pore scale and its effects on the thermoporo-elastic behavior of the homogenized porous medium are considered. Basic numerical considerations are formulated. A comparison with experimental results illustrates the ability of the model to predict the volume instabilities of hydrated cement pastes upon freezing.

Résumé

Les principaux aspects d'un modèle permettant de prédire le comportement au gel de matériaux cimentaires sont détaillés. Le modèle a été développé en se basant sur les concepts de la poro-mécanique et permet de prendre en considération l'équilibre thermodynamique local entre différentes phases. La formation de la glace est décrite à l'échelle du pore et ses effets sur le comportement thermo-poro-élastique du milieu poreux homogénéisé sont considérés. Des considérations numériques élémentaires sont formulées. Une comparaison avec des résultats expérimentaux illustre la capacité du modèle à prédire les instabilités volumiques de pâtes de ciment hydraté exposées à des conditions de gel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Powers, T.C. and Brownyard, T.L., ‘Studies of the physical properties of hardened Portland cement paste—Part 8: The freezing of water in hardened Portland cement paste’,Journal of the American Concrete Institute 18(8) (1946) 934–969.

    Google Scholar 

  2. Litvan, G.G., ‘Frost action in cement paste’,Mater. Struct. 34 (1973) 3–8.

    Google Scholar 

  3. Setzer, M.J., ‘Interaction of water with hardened cement paste’, in: S. Mindess (Ed.), ‘Advances in Cementitious Materials’,Am. Ceram. Soc. Trans. 16, Westerville, Ohio, USA, 1990, 415–439.

  4. Powers, T.C., ‘The air requirement of frost-resistant concrete’, Proceedings of the Highway Research Board29 (1949) 184–211.

    Google Scholar 

  5. Scherer, G.W., ‘Crystallization in pores’,Cement and Concrete Research 29(8) (1999) 1347–1358.

    Article  Google Scholar 

  6. Powers, T.C. and Helmuth, R.A., ‘Theory of volume changes in hardened Portland cement paste’, Proceedings of the Highway Research Board32 (1953) 285–297.

    Google Scholar 

  7. Feldman, R.F., ‘Length change-adsorption relations for the water-porous glass system to −40°C’,Canadian Journal of Chemistry 42(2) (1970) 287–297.

    Article  Google Scholar 

  8. Litvan, G.G., ‘Phase transitions of adsorbates—Part IV: Mechanism of frost action in hardened cement paste’,Journal of the American Ceramic Society 55(1) (1972) 38–42.

    Article  Google Scholar 

  9. Powers, T.C., ‘Topics in concrete technology: Part 3-Mixtures containing intentionally entrained air’,Journal of PCA Research and Development Laboratories 6(3) (1964) 19–42.

    Google Scholar 

  10. Marchand, J., Pleau, R. and Gagné, R., ‘Deterioration of concrete due to freezing and thawing’, Material Science of Concrete, Vol. 1, American Ceramic Society, Westerville, OH, USA, 283–354, 1995.

    Google Scholar 

  11. Penttala, V.E., ‘Freezing-induced strains and pressures in wet porous materials and especially in concrete mortars’,Advanced in Cement Based Materials 7 (1998) 8–19.

    Article  Google Scholar 

  12. Bager, D.H. and Sellevold, E.J., ‘Ice formation in hardened cement paste—Part I: Room temperature cured paste with variable moisture contents’,Cement and Concrete Research 16(5) (1986) 709–720.

    Article  Google Scholar 

  13. Fagerlund, G., ‘Moisture uptake and service life of concrete exposed to frost’, Concrete under severe conditions, Vol. 1, E & FN Spon, United-Kingdom, 1995, 221–232.

    Google Scholar 

  14. Thomas, M.D., ‘Laboratory and field studies of salt scaling in fly ash concrete’, in ‘Resistance of Concrete to Freezing and Thawing’, Edited by M.J. Setzer and R. Auberg (E & FN SPON, London, U.K., 1997) 21–30.

    Google Scholar 

  15. Marchand, J., Pigeon, M., Maltais, Y., Machabée, Y. and Talbot, C., ‘Influence of fly ash on the concrete scaling resistance’, Edited by M.J. Setzer and R. Auberg, E & FN SPON, London, U.K., 11–20, 1997.

    Google Scholar 

  16. Zuber, B., ‘Towards a model describing the volume instability of hydrated cement systems exposed to sub-freezing temperatures’, Ph.D. Thesis, Department of Civil Engineering, École Normale Supérieure de Cachan-Laval University, France-Canada, 2002 [in French].

    Google Scholar 

  17. Zuber, B. and Marchand, J., ‘Modeling the deterioration of hydrated cement systems exposed to frost action—Part 1: Description of the mathematical model’,Cement and Concrete Research 30(12) (2000) 1929–1941.

    Article  Google Scholar 

  18. Diamond, S., ‘Cement paste microstructure: An overview at several levels’, Proceedings of the Conference on Hydraulic Cement Paste—Their Structure and Properties, Sheffield, England, British Cement and Concrete Association, 1976, 2–30.

  19. Diamond, S. and Winslow, D.N., ‘A mercury porosimetry study of the evolution of porosity in Portland cement’,Journal of Materials 5(3) (1970) 564–585.

    Google Scholar 

  20. Sellevold, E.J. and Bager, D.H., ‘Some implications of calorimetric ice formation results for frost resistance testing of cement products’, Technical Report 86/80, The Technical University of Denmark, Building Materials Laboratory, 1985, 28 p.

  21. Zuber, B., Marchand, J., Delagrave, A. and Bournazel, J.P., ‘Ice formation mechanisms in normal and high-performance concrete mixture’,ASCE Materials Journal 12(1) (2000) 16–23.

    Article  Google Scholar 

  22. Coussy, O., ‘Mechanics of porous continua’ (John Wiley & Sons Ltd, 1995).

  23. Bary, B., ‘Study of the hydro-mechanical coupling in damaged concrete’, Ph.D. Thesis, École Normale Supérieure de Cachan, Cachan, France, 1996 [in French].

    Google Scholar 

  24. Akinfiev, N.N., Mironenko, M.V. and Grant, S.A., ‘Thermodynamic properties of NaCl solutions at subzero temperatures’,Journal of Solution Chemistry 30(12) (2001) 1065–1080.

    Article  Google Scholar 

  25. Hobbs, P.V., ‘Ice Physics’ (Clarendon Press, Oxford, UK, 1974).

    Google Scholar 

  26. Bornert, M., Bretheau, T. and Gilormini, P., ‘Homogénéisation en Mécanique des Matériaux. 1—Matériaux Aléatoires Élastiques et Milieux Périodiques’ (Hermès Science, 2001).

  27. Happel, J. and Brenner, H., ‘Low Reynolds number hydrodynamics’, in ‘Mechanics of Fluids and Transport Processes’, 5th edition (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991).

    Google Scholar 

  28. Hassanizadeh, M. and Gray, W.G., ‘General consideration equations for multiphase system—Part 3: Constitutive theory for porous media flow’,Advances in Water Research 3 (1980) 25–40.

    Article  Google Scholar 

  29. Defay, R., Prigogine, I., Bellemans, A. and Everett, D.H., ‘Surface Tension and Adsorption’ (Longmans, 1966).

  30. Gregg, S.J. and Sing, K.S.W., ‘Adsorption, surface area and porosity’, 2nd edition (Academic Press, Harcourt Brace & Company Publishers, London, UK, 1982).

    Google Scholar 

  31. Drost-Hansen, W., ‘The water-ice interface as seen from the liquid side’,Journal of Colloid and Interfaces Science 25 (1967) 131–160.

    Article  Google Scholar 

  32. Fagerlund, G., ‘Determination of pore-size distribution from freezing-point depression’,Mater. Struct. 6(33) (1973) 215–225.

    Google Scholar 

  33. Scherer, G.W., ‘Freezing gels’,Journal of Non-Crystalline Solids 155 (1993) 1–25.

    Article  Google Scholar 

  34. Schulson, E.M., ‘The structure and mechanical behavior of ice’,JOM: Member Journal of The Minerals, Metals & Materials Society 51(2) (1999) 21–27.

    Google Scholar 

  35. Anatoly, M.F. and Zaretsky, Y.K., ‘Ice strength as a function of hydrostatic pressure and temperature’, CRREL, Report 97-6, 1997.

  36. Reddy, J.N., ‘An introduction to the finite element method, 2nd edition (McGraw Hill, New York, USA, 1993).

    MATH  Google Scholar 

  37. Schrefler, B.A., Sanavia, L. and Majorana, C.E., ‘A multiphase medium model for localisation and postlocalisation simulation in geomaterials’,Mechanics of Cohesive-Frictional Materials 1 (1996) 95–114.

    Article  Google Scholar 

  38. Dureisseix, D., ‘Towards efficient computational strategies for multiphysics problems—Using the multiscale features’, Habilitation à diriger les recherches, Université Pierre et Marie Curie Paris 6, France, 2001 [in French].

    Google Scholar 

  39. Lallement, J.-M., ‘Study of the change in the physical properties of a saturated porous medium exposed to freezing’, DEA Thesis, École Normale Supérieure de Cachan, Cachan, France, 2000 [in French].

    Google Scholar 

  40. ASTM Standard Test—C 457, ‘Standard test method for microscopical determination of parameters of the air-void system in hardened concrete’, Annual Book of ASTM Standards, Vol. 04.02, 1992.

  41. Snyder, K.A., ‘A numerical test of air void spacing equations’,Advanced Cement Based Materials 3 (1998) 28–44.

    Article  Google Scholar 

  42. Setzer, M.J., ‘A new approach to describe frost action in hardened cement paste and concrete’, Proceedings of the Conference on Hydraulic cement pastes—Their structures and properties, British Cement and Concrete Association, Sheffield, England, UK, 1976, 312–325.

  43. Feldman, R.F. and Beaudoin, J.J., ‘Pretreatment of hardened hydrated cement pastes for mercury intrusion measurements’,Cement and Concrete Research 21 (1991) 297–308.

    Article  Google Scholar 

  44. Gallé, C., ‘Effect of drying on cement-based materials pore structure as identified by mercury intrusion porosimetry—A comparative study between oven-, vacuum-, and freeze-drying’,Cement and Concrete Research 31(2) (2001) 1467–1477.

    Article  Google Scholar 

  45. Feldman, R.F. and Beaudoin, J.J., ‘Microstructure and strength of hydrated cement’,Cement and Concrete Research 6 (1976) 389–400.

    Article  Google Scholar 

  46. Grant, S.A., ‘Physical and chemical factors affecting contaminant hydrology in cold environments’, ERDC/CRREL, Technical Report TR-00-21, 2000.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editorial Note Laval University (Canada) is a RILEM Titular Member. Prof. Jacques Marchand is Editor in Chief forConcrete Science and Engineering and Associate Editor forMaterials and Strutures, as well as a member of the RILEM Management Advisory Committee (MAC). He was awarded the 2000 Robert L'Hermite Medal. He also participates in the work of RILEM TC 195-DTD ‘Recommendation for test methods for autogenous deformation and thermal dilation of early age concrete’.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuber, B., Marchand, J. Predicting the volume instability of hydrated cement systems upon freezing using poro-mechanics and local phase equilibria. Mat. Struct. 37, 257–270 (2004). https://doi.org/10.1007/BF02480634

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02480634

Keywords

Navigation