Skip to main content
Log in

Hygrothermal and mechanical model of concrete at high temperature

  • Scientific Reports
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

A computational model allowing for the thermohygrometric and mechanical analysis of concrete structures at high temperature by means of the finite element method is presented. The model includes creep coupled with damage and related cross-effects due to hygrothermal behaviour. A comparison between experimental tests performed by Bažantet al. on concrete cylinders at high temperature and the numerical results obtained from the model presented are shown.

Résumé

On présente un modèle pour l’analyse thermohygrométrique et mécanique des structures en béton à haute température au moyen de la méthode des éléments finis. Ce modèle inclut le fluage associé à l’endommagement et les effets reliés au comportement hygrothermique. On présente une comparaison entre des résultats des essais réalisés par Bažantet al. sur des cylindres en béton à haute température et les résultats numériques obtenus du modèle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bažant, Z. P. and Thonguthai, W., ‘Pore pressure and drying of concrete at high temperature’,Journal of the Engineering Mechanics Division, ASCE (October 1978).

  2. Bažant, Z. P. and Thonguthai, W., ‘Pore pressure in heated concrete walls: theoretical prediction’,Magazine of Concrete Research 31 (107) (June 1979).

  3. Grigoletti, U., Majorana, C. E. and Vitaliani R., ‘Analisi termoigrometrica del continuo tridimensionale con metodi numerici applicati agli elementi finiti. Applicazione al caso dei calcestruzzi’, Estratto dagli Atti dell’Ist. Veneto di Sc. Lett. ed Arti, tomo CXLVIII, 1989–90.

  4. Bažant, Z. P.et al. ‘Review of literature on high temperature behaviour of concrete’, Vol. 1, EPRI, Palo Alto, California, June 1982.

    Google Scholar 

  5. Becker, J. M. and Bresler, B., ‘Reinforced concrete frames in fire environments’,Journal of the Structural Division, ASCE (January 1977).

  6. Bremer, F., ‘Multi-layer (double-wall) prestressed concrete pressure vessel’, Nuclear Engineering and Design, Amsterdam, 1967.

  7. Cheung, F. B. and Baker, J., ‘Transient dehydration model for concrete’, Technical Report, Reactor Analysis and Safety Division, Argonne, 1976.

    Google Scholar 

  8. Dougill, J. W., ‘Conditions for instability in restrained concrete panels exposed to fire’,Magazine of Concrete Research (1972).

  9. Fischer, R., ‘On the behaviour of cement mortar and concrete at high temperatures’,Deutscher Ausschuss fur Stahtbeton, Heft 216, W. Ernst und Sohn, Berlin, 1970.

    Google Scholar 

  10. Harmathy, T. Z., ‘Thermal properties of concrete at elevated temperatures’,Journal of Materials, American Society of Testing and Materials 5 (1970).

  11. Harmathy, T. Z. and Allen, L. W., ‘Thermal properties of selected masonry unit concretes’,Journal of the American Institute 70 (1973).

  12. Hundt, J., ‘Zur Wurme und Feuchtigkeitsleitung in Beton’,Deutscher Ausschuss fur Stahlbeton, Heft 280, W. Ernst und Sohn, Berlin, 1977.

    Google Scholar 

  13. McDonald, J. E., ‘Moisture Migration in Concrete’, Technical Report C-75-I, Concrete Laboratory, U. S. Army Engineers Waterways Experimental Station, Vicksburg, Miss., May, 1975.

    Google Scholar 

  14. Neville, A. M., ‘Properties of Concrete’, (A Halsted Press Book, John Wiley and Sons, New York, 1973).

    Google Scholar 

  15. Pihlajavaara, S. E. and Tivsanen, K., ‘A preliminary study on thermal moisture transfer in concrete’, Laboratory of Concrete Technology, N. 15, Otaniemi, Finland, 1970.

  16. Becker, J. M. and Bresler, B., ‘A computer program for the fireresponse of structures—Reinforced concrete frames’, Structural Engineering and Structural Mechanics Department of Civil Engineering, Berkeley, California, August 1974.

    Google Scholar 

  17. Bertero, V. V., Bresler, B. and Polivka, M., ‘Instrumentations and techniques for study of concrete properties at elevated temperatures’, American Concrete Institute, International Seminar on Concrete for Nuclear Reactors, Berlin, October 1970.

  18. Argyris, J. H., Warnke, E. P. and William, K. J., ‘Computation of thermal and moisture fields in massive concrete structures via finite elements’,Deutscher Ausschuss fur Stahlbeton (Berlin, 1977).

  19. England, G. L. and Ross, A. D., ‘Shrinkage, moisture and pore pressures in heated concrete’, Proceedings, American Concrete Institute, International Seminar of Concrete for Nuclear Reactors, Berlin, October 1970.

  20. England, G. L. and Sharp, T. J., ‘Migration of moisture and pore pressure in heated concrete’, Proceedings, First International Conference on Structural Mechanics in Reactor Technology, Berlin, 1971.

  21. Bažant, Z. P., ‘Mathematical model for creep and thermal shrinkage of concrete at high temperature’,Nuclear Engineering and Design 76 (Amsterdam, 1976).

  22. Schrefler, B. A., Simoni, L. and Majorana, C. E., ‘A general model for the mechanics of saturated-unsaturated porous materials’,Mater. Struct. 22 (1989) 323–334.

    Article  Google Scholar 

  23. Whitaker, S., ‘Simultaneous heat mass and momentum transfer in porous media: a theory of drying’ in ‘Advances in heat transfer’, no 13 (Academic Press, New York, 1977).

    Google Scholar 

  24. Schrefler, B. A., ‘F. E. in environmental engineering: coupled thermo-hydro-mechanical process in porous media including pollutant transport’,Archives of Computational Methods in Engineering 2 (3) (1995) 1–54.

    Google Scholar 

  25. Baggio, P., Majorana, C. E. and Schrefler, B. A., ‘Thermohygro-mechanical analysis of concrete’,Int. Journal for Num. Methods in Fluids 20 (1995) 573–595.

    Article  MATH  Google Scholar 

  26. Lewis, R. W., Roberts, P. J. and Schrefler, B. A., ‘Finite element modelling of two-phase heat and fluid flow in deforming porous media’,Transport in Porous Media 4 (1989) 319–334.

    Article  Google Scholar 

  27. Bažant, Z. P. and Najjar, L. J., ‘Nonlinear water diffusion in nonsaturated concrete’,Mater. Struct. (1972).

  28. Zhukov, V. V.et al., ‘Thermophysical analysis of structures of heat-resistant concretes’, NIIZhB, Volgograd, 1971.

    Google Scholar 

  29. Zhukov, V. V. and Shevchenko, V. I., ‘Investigation of causes of possible spalling and failure of heat-resistant concretes at drying, first heating and cooling’, Zharostoikie Betony, K. D. Nebrasov ed., Stroiizdat, Mosca, 1974.

    Google Scholar 

  30. Powers, T. C. and Brownyard, T. L., ‘Studies of the physical properties of hardened portland cement pastes’, Research Laboratory of the Portland Cement Association’,ACI Journal, (April 1967).

  31. Bažant, Z. P., ‘Theory of creep and shrinkage in concrete structures: a precis of recent developments’,Mechanics Today, (New York, 1975).

  32. Bažant, Z. P. and Wittmann, F. H., ‘Creep and Shrinkage in Concrete Structures’, (John Wiley and Sons, Ltd., New York, 1982).

    Google Scholar 

  33. Bažant, Z. P. and Kaplan, M. F., ‘Concrete at High Temperature’ (Longman, London, 1996).

    Google Scholar 

  34. Bažant, Z. F. and Wu, S. T., ‘Thermoviscoelasticity of aging concrete’,Journal of Eng. Mech. Div., ASCE 100 (EM3) 1974.

  35. Glasstone, S., Laidler, K. J. and Eyring, H., ‘The Theory of Rate Process’ (McGraw Hill, New York, 1941).

    Google Scholar 

  36. Bažant, Z. P. and Wu, S. T., ‘Rate type creep law of aging concrete based on Maxwell chain’,Mater. Struct. (1974).

  37. Mazars, J., ‘Application de la mécanique de l’endommagement au comportement non linéaire et la rupture du béton de structure’, Thèse de Doctorat d’État, L.M.T., Université de Paris, France, 1984.

    Google Scholar 

  38. Mazars, J. and Pijaudier-Cabot, G., ‘Continuum damage theory-application to concrete’,Journal of Engineering Mechanics, ASCE,115 (2) (1989) 345–365.

    Article  Google Scholar 

  39. CEB-FIP Model Code 90, par. 2.1.9.

  40. Majorana, C. E. and Salomoni, V., ‘Strain localisation in concrete using damage mechanics’, Proceedings of the Fifth International Conference on Computational Plasticity (COMPLASV), 17th–20th March, Barcelona, Spain, 728–734.

  41. Bonacina, C., Cavallini, A. and Mattarolo, L., ‘Trasmissione del calore’, CLEUP, Padova, 1989.

    Google Scholar 

  42. Zienkiewicz, O. C. and Taylor, R. L., ‘The Finite Element Methods’, (McGraw-Hill, London, 1989).

    Google Scholar 

  43. Lewis, R. W. and Schrefler, B. A. ‘The Finite Element Method in the Deformation and Consolidation of Porous Media’ (John Wiley and Sons, 1986).

  44. Lewis, R. W. and Schrefler, B. A., ‘Consolidation of Deformable Porous Material’, (J. Wiley & Sons Ltd., New York, 1987).

    Google Scholar 

  45. Majorana, C. E. and Vitaliani, R., ‘Numerical modelling of creep and shrinkage of concrete by finite element method’, Proceedings of SCI-C 1990, Second International Conference of Computer Aided Analysis and Design of Concrete Structures, Zell am See, Austria, April 1990, 773–784.

  46. Bažant, Z. P. and Panula, L., ‘Practical prediction of creep and shrinkage of concrete’,Mater. Struct. (1979).

  47. Wittmann, F. H., ‘Deformation of concrete at variable moisture content’, in ‘Mechanics of Geomaterials, Rock, Concrete, Soils’, (Wiley, 1985).

  48. Welty, J. R., Wicks, C. E. and Wilson, R. E., ‘Fundamentals of Heat and Mass Transfer’ (John Wiley and Sons, N. Y., 1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editorial Note Dr. Carmelo Majorana is a RILEM Senior Member and a corresponding member of TC 114-CCS on Computer Programmes for Creep and Shrinkage Prediction. Prof. Bernhard Schrefler is a RILEM Senior Member.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majorana, C.E., Salomoni, V. & Schrefler, B.A. Hygrothermal and mechanical model of concrete at high temperature. Mat. Struct. 31, 378–386 (1998). https://doi.org/10.1007/BF02480710

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02480710

Keywords

Navigation