Skip to main content
Log in

Elastography: Imaging the elastic properties of soft tissues with ultrasound

  • Review Article
  • Published:
Journal of Medical Ultrasonics Aims and scope Submit manuscript

Abstract

Elastography is a method that can ultimately generate several new kinds of images, called elastograms. As such, all the properties of elastograms are different from the familiar properties of sonograms. While sonograms convey information related to the local acoustic backscatter energy from tissue components, elastograms relate to its local strains, Young's moduli or Poisson's ratios. In general, these elasticity parameters are not directly correlated with sonographic parameters, i.e. elastography conveys new information about internal tissue structure and behavior under load that is not otherwise obtainable. In this paper we summarize our work in the field of elastography over the past decade. We present some relevant background material from the field of biomechanics. We then discuss the basic principles and limitations that are involved in the production of elastograms of biological tissues. Results from biological tissues in vitro and in vivo are shown to demonstrate this point. We conclude with some observations regarding the potential of elastography for medical diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alam SK, Ophir J, Varghese T: Elastographic axial resolution criteria: An experimental study. IEEE Trans UFFC 2000;47 (1): 304–309.

    CAS  Google Scholar 

  2. Alam SK, Ophir J, Cespedes I, et al: A deconvolution filter for improvement of time-delay estimation in elastography. IEEE Trans UFFC 1998 a;45 (6): 1565–1572.

    CAS  Google Scholar 

  3. Alam SK, Ophir J: Reduction of signal decorrelation from mechanical compression of tissues by temporal stretching: Applications to elastography.Ultrasound Med Biol 1997;23: 95–105.

    Article  PubMed  CAS  Google Scholar 

  4. Alam SK, Ophir J, Konofagou E, et al: An adaptive strain estimator for Elastography. IEEE Trans UFFC 1998 b;45: 461–472.

    CAS  Google Scholar 

  5. Alam SK, Richards DW, Parker KJ: Detection of Intraocular Pressure change in the eye using sonoelastic Doppler ultrasound.Ultrasound Med Biol 1994;20: 751–758.

    Article  PubMed  CAS  Google Scholar 

  6. Anderson, WAD, Pathology, C.V. Mosby Co., St. Louis, 1953.

    Google Scholar 

  7. Bakke T: A new mechanical instrument for the measurement of fibro-elasticity with special reference to its use in the assessment of the consistency of the uterine cervix.Acta Obstet Gynecol Scand 1973;52: 277–287.

    Article  PubMed  CAS  Google Scholar 

  8. Brusseau E, Perrey C, Delachartre P, et al: Axial strain imaging using a local estimation of the scaling factor from RF ultrasound signals.Ultrason Imaging 2000;22 (2): 95–107.

    PubMed  CAS  Google Scholar 

  9. Céspedes I, Ophir J, Ponnekanti H, et al: Elastography: elasticity imaging using ultrasound with application to muscle and breast in vivo.Ultrason Imaging 1993;15: 73–88.

    Article  PubMed  Google Scholar 

  10. Chen EJ, Novakofski J, Jenkins WK, et al: Young's Modulus measurements of soft tissues with application to elasticity imaging. IEEE Trans UFFC 1996;43: 191–194.

    Google Scholar 

  11. D'Angelo E: Stress-strain relationships during uniform and non-uniform expansion of isolated lungs.Respir Physiol 1975;23: 87–107.

    Article  PubMed  Google Scholar 

  12. Demiray H: A note on the elasticity of soft biological tissues.J Biomech 1972;5: 309–311.

    Article  PubMed  CAS  Google Scholar 

  13. Doyley MM, Bamber JC, Fuechsel F, et al: A freehand elastographic imaging approach for clinical breast imaging: System development and performance evaluation.Ultrasound Med Biol 2001;27 (10) 1347–1357

    Article  PubMed  CAS  Google Scholar 

  14. Fatemi M, Greenleaf JF: Vibro-acoustography: An imaging modality based on ultrasound-stimulated acoustic emission.Proc Natl Acad Sci USA 1999;96 (12): 6603–8.

    Article  PubMed  CAS  Google Scholar 

  15. Fukaya H, Hildebrandt J, Martin C J: Stress-strain relations of tissue sheets undergoing uniform two dimensional stretch. J Appl Physiol 1969;27: 758–762.

    PubMed  Google Scholar 

  16. Fung YC: Biomechanical properties of living tissues, Ch. 7, Springer Verlag, NY, 1981.

    Google Scholar 

  17. Galey FR: Elastic properties of fixed and fresh muscle. J Ultrastruct Res 1969;26: 424–441.

    Article  PubMed  CAS  Google Scholar 

  18. Gao L, Parker KJ, Lerner RM, et al: Imaging of the elastic properties of tissue—A review.Ultrasound Med Biol 1996;22: 959–977.

    Article  PubMed  CAS  Google Scholar 

  19. Garra BS, Céspedes EI, Ophir J, et al: Elastography of breast lesions: Initial clinical results.Radiology 1997;202: 79–86.

    PubMed  CAS  Google Scholar 

  20. Harley R, James D, Miller A, et al: Phonons and the elastic moduli of collagen and muscle.Nature 1977;265: 285–287.

    Article  Google Scholar 

  21. Kallel F, Ophir J, Magee K, et al: Elastographic imaging of low-contrast elastic modulus distributions in tissue.Ultrasound Med Biol 1998;,24: 409–425.

    Article  PubMed  CAS  Google Scholar 

  22. Kallel F, Bertrand M, Ophir J: Fundamental limitations on the contrast-transfer efficiency in elastography: An analytic study.Ultrasound Med Biol 1996;22: 463–470.

    Article  PubMed  CAS  Google Scholar 

  23. Kallel F, Varghese T, Ophir J, et al: The nonstationary strain filter in elastography, Part II-Lateral and elevational decorrelation.Ultrasound Med Biol 1997;23: 1357–1369.

    Article  PubMed  CAS  Google Scholar 

  24. Kallel F, Price R E, Konofagou EE, Ophir J: Elastographic Imaging of the normal canine prostate in vitro.Ultrason Imaging 1999;21: 201–205.

    PubMed  CAS  Google Scholar 

  25. Konofagou EE, Ophir J, Kallel F, et al: Elastographic dynamic range expansion using variable applied strains.Ultrason Imaging 1997;19: 145–166.

    PubMed  CAS  Google Scholar 

  26. Konofagou EE, Varghese T, Ophir J, et al: Incoherent and Direct Spectral Strain Estimators in Elastography.Ultrasound Med Biol 1999;25 (7): 1115–1129.

    Article  PubMed  CAS  Google Scholar 

  27. Konofagou EE, Ophir J: A new elastographic method for estimation and imaging of lateral displacements, lateral strains, corrected axial strains and Poisson's ratios in tissues.Ultrasound Med Biol 1998;24: 1183–1199.

    Article  PubMed  CAS  Google Scholar 

  28. Krouskop TA, Wheeler TM, Kallel F, et al: The elastic moduli of breast and prostate tissues under compression.Ultrason Imaging 1998;20: 151–159.

    Google Scholar 

  29. Krouskop TA, Vinson S, Goode B, et al: A pulsed Doppler ultrasonic system for making noninvasive measurements of the mechanical properties of soft tissue.J Rehabil Res Dev 1987;24: 1–8.

    PubMed  CAS  Google Scholar 

  30. Lerner RM, Parker KJ: Sono-elasticity in ultrasonic tissue characterization and echographic imaging. Proc. 7th Eur. Comm. Workshop, J.M. Thijssen, Ed., Nijmegen, The Netherlands, 1987.

  31. Lerner RM, Huang SR, Parker KJ: “Sonoelasticity” images derived from ultrasound signals in mechanically vibrated tissues.Ultrasound Med Biol 1990;16: 231–239.

    Article  PubMed  CAS  Google Scholar 

  32. Lorenz A, Pesavento A, Garcia-Schurmann M, et al: New results with real time strain imaging. Frequenz 2001;55 (1–2): 21–24.

    Google Scholar 

  33. Malinauskas M, Krouskop TA, Barry P A: Noninvasive measurement of the elastic modulus of tissue in the aboveknee amputation stump.J Rehabil Res Dev 1989;26: 45–52.

    PubMed  CAS  Google Scholar 

  34. Merritt CR, Forsberg F, Liu J, et al: In vivo elastography in animal models: feasibility studies. Abstract, American Institute of Ultrasound in Medicine, 2002 Annual Convention, Nashville TN: p. S: 98.

  35. O'Donnell M, Skovoroda AR, Shapo BM, et al: Internal Displacement and Strain Imaging Using Ultrasonic Speckle Tracking. IEEE Trans UFFC 1994;41: 314–325.

    Google Scholar 

  36. Ophir J, Alam SK, Garra BS, et al: Elastography: Measurement and imaging of tissue elasticity. Proc. Instn. Mech. Engrs. Vol. 219 part H, pp. 203–233, 1999.

    Google Scholar 

  37. Ophir J, Cespedes EI, Ponnekanti H, et al: Elastography: a quantitative method for imaging the elasticity of biological tissues.Ultrason Imaging 1991;13: 111–134.

    Article  PubMed  CAS  Google Scholar 

  38. Ophir J, Cespedes I, Garra B, et al: Elastography: ultrasonic imaging of tissue strain and elastic modulus in vivo.Eur J Ultrasound 1996;3: 49–70.

    Article  Google Scholar 

  39. Ophir J, Kallel F, Varghese T, et al: Elastography: A systems approach, The International Journal of Imaging Systems and Technology. John Wiley & Sons, Inc, 1997;8: 89–103.

    Article  Google Scholar 

  40. Pesavento A, Perrey C, Krueger M, et al: A time-efficient and accurate strain estimation concept for ultrasonic elastography using iterative phase zero estimation. IEEE Trans UFFC 1999;46 (5): 1057–1067.

    CAS  Google Scholar 

  41. Ponnekanti H, Ophir J, Y Huang, et al: Fundamental mechanical limitations on the visualization of elasticity contrast in elastography.Ultrasound Med Biol 1995;21: 533–543.

    Article  PubMed  CAS  Google Scholar 

  42. Righetti R, Kallel F, Stafford RJ, et al: Elastographic characterization of HIFU-induced lesions in canine livers.Ultrasound Med Biol 1999;25 (7): 1099–1113.

    Article  PubMed  CAS  Google Scholar 

  43. Righetti R, Ophir J, Ktonas, P: Axial resolution in Elastography.Ultrasound Med Biol 2002a;28 (1): 101–113.

    Article  PubMed  Google Scholar 

  44. Righetti R, Srinivasan S, Ophir J: Lateral Resolution in Elastography. Submitted to Ultras Med Biol 2002 b.

  45. Rosenthal SJ, Hall TJ, Spalding C, et al: Real time palpation breast imaging. Abstract, American Institute of Ultrasound in Medicine, 2002 Annual Convention, Nashville TN: p. S: 17.

  46. Saada S: Elasticity, Theory and Applications, Pergamon Press, New York 1983.

    Google Scholar 

  47. Sarvazyan AP, Skovoroda AR, Emelianov SY, et al: Biophysical bases of elasticity imaging. Acoustical Imaging 1995;21: 223–240.

    Google Scholar 

  48. Sarvazyan AP: Shear acoustic properties of soft biological tissues in medical diagnostics. J Acoust Soc Am Proc 125th meeting 1993;93: 2329.

    Article  Google Scholar 

  49. Varghese T, Ophir J: An analysis of elastographic contrastto-noise ratio performance.Ultrasound Med Biol 1998;24 (6): 915–924.

    Article  PubMed  CAS  Google Scholar 

  50. Varghese T, Ophir J: The nonstationary strain filter in elastography, Part I Frequency dependent attenuation.Ultrasound Med Biol 1997a;23: 1343–1356.

    Article  PubMed  CAS  Google Scholar 

  51. Varghese T, Ophir J: A theoretical framework for performance characterization of elastography: The Strain Filter. IEEE Trans UFFC 1997b;44: 164–172.

    CAS  Google Scholar 

  52. Varghese T, Bilgen M, Ophir J; Multiresolution imaging in elastography. IEEE Trans Ultrason Ferroel Freq Cont 1998;45: 65–75.

    Article  CAS  Google Scholar 

  53. Walker WF, Fernandez FJ, Negron LA; A method of imaging viscoelastic parameters with acoustic radiation force.Phys Med Biol 2000;45 (6): 1437–1447.

    Article  PubMed  CAS  Google Scholar 

  54. Yamada H: Strength of Biological materials. Baltimore, The Williams & Wilkins, 1970.

    Google Scholar 

  55. Yamakoshi Y, Sato J, Sato T: Ultrasonic imaging of internal vibration of soft tissue under forced vibration. IEEE Trans UFFC 1990;37: 45–53.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Ophir, J., Alam, S.K., Garra, B.S. et al. Elastography: Imaging the elastic properties of soft tissues with ultrasound. J Med Ultrasonics 29, 155–171 (2002). https://doi.org/10.1007/BF02480847

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02480847

Keywords

Navigation