Skip to main content
Log in

Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method

  • RILEM Technical Committees
  • RILEM TC 154-EMC: ‘Electrochemical Techniques for Measuring Metallic Corrosion’ Recommendations
  • Published:
Materials and Structures Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

B:

Stern constant [V]

C:

Electrical capacitance [F]

CE:

Counter or auxiliary electrode

E:

Electrical potential [V]

ΔE:

Potential step [V]

Ecorr :

Corrosion or mixed potential [V]

icorr :

Instantaneous corrosion current density [μA/cm2]

Icorr :

Non-uniform instantaneous corrosion current Density [μA/cm2]

Δl:

Current step [A]

Ipit :

Instantaneous corrosion current in a pit or localized corroding spot [μA/cm2]

Igalv :

Galvanic corrosion current between corroding and cathodic zones [μA/cm2 or μA]

Icorr,lab :

Icorr determined in small specimens with finite reinforcement area [μA/cm2]

Icorr,sing :

Icorr determined on site only one time [μA/cm2]

Icorr,tn :

Averaged Icorr obtained from integrating or averaging several Icorr measurements obtained during a period of time tn [μA/cm2]

Icorr REP :

Representative-Icorr value [μA/cm2]

Lcrit :

Critical length polarized in on-site measurements [cm]

Px :

Penetration depth of corrosion attack at a certain time [mm]

Ppit :

Maximum pit or localized penetration depth [mm]

Re :

Electrical resistance [ω]

R1, R2, RB :

Reference electrodes for critical length measurement hold in the auxiliary electrode of potential attentuation method

RE:

Reference electrode for measurement of Ecorr

Rp :

Polarization Resistance [ω or ωcm2]

Pp,true :

Apparent Rp [ω or ωcm2]

Rp :

Rp obtained in a reference reinforced concrete slab for calibrating portable corrosion-rate-meters [ωcm2]

S:

Area of the reinforcement to be measured [m2]

Sa :

Anodic or corroding area [m2]

SC :

Cathodic area [m2]

S1, S2 :

Reference electrodes to control the confinement in the guard ring auxiliary electrode time or timelife t

ti :

Initiation period in service life model [year]

tp :

Propagation or corroding period in service life model [year]

Vcorr :

Instantancous corrosion rate [mm/year or μm/year]

Vcorr REP :

Representative Vcorr value [μm/year or mm/year]

α:

Pitting factor

x :

Loss in reinforcement diameter after a certain tp [mm]

o :

Initial nominal reinforcement diameter [mm]

t :

Residual reinforcement diameter after a certain tp [mm]

σ:

Electrical resistivity [ωm]

References

  1. Andrade, C. and González, J. A., ‘Quantitative measurements of corrosion rate of reinforcing steels embedded in concrete using polarization resistance measurements’,Werkstoffe und Korrosion 29, (1978), 515–519.

    Article  Google Scholar 

  2. Stern, M. and Geary, A. L., ‘Electrochemical Polarization: I. A. theoretical analysis of the shape of polarization curves’,Journal of Electrochemical Soc. 104 (1) (1957) 56–63.

    Google Scholar 

  3. Stern, M. and Weisert, E.D., ‘Experimental observations on the relations between polarization resistance and corrosion rate’, Proc. American Society Testing, Materials59 (1958) 1280.

    Google Scholar 

  4. Feliú, S., González, J.A., Andrade and C. Feliú, V., ‘On-site determination of the Polarization Resistance in a reinforced concrete beam’,Corrosion (USA)43 (Sept, 1987) 1–9.

    Google Scholar 

  5. Andrade, C., ‘New electrochemical technique for the corrosion measurement in reinforced and presstressed concretes. Use of inhibitor admixtures as prevention method’, Ph.D. Thesis-Faculty of Chemistry, Complutense Univ. of Madrid, July 1973.

  6. Lorenz, W.J. and Mansfeld, F., ‘Determination of corrosion rates by electrochemical DC and AC methods’,Corrosion Science,21(9) (1981) 647–672.

    Article  Google Scholar 

  7. Epelboin, I., Gabrielli, C., Keddam, M. and Takenouti, H., ‘Alternating-current impedance measurements applied to corrosion studies and corrision-rate determination’, Electrochemical Corrosion Testing, ASTM STP 727. F. Mansfeld and U. Bertocci, Eds., American Society for Testing and Materials (1981) 150–166.

  8. Gabrielli, C., Keddam, M., Takenouti, H., Vu Quang Kinh and Bourelier, F., ‘The relationship between the impedance of corroding electrode and its polarization resistance determined by a linear voltage sweep technique’,Electrochimica Acta 24 (1979) 61–65.

    Article  Google Scholar 

  9. McDonald, D.D. and McKubre, M.C.H., ‘Electrochemical Impedance Techniques in corrosion science’, Electrochemical Corrosion Testing ASTM STP 727-F. Mansfeld and U. Bertocci Eds. (1981) 110–149.

  10. González, J.A. and Andrade, C., ‘Effect of carbonation, chlorides an relative ambient humidity on the corrosion of galvanized rebars embeded in concrete’,British Corrosion Journal,17(1) (1982) 21–28.

    Google Scholar 

  11. Gouda, V.K., Shater, M.A. and Mikhail, R. Sh., ‘Hardened portland blast-furnace slag cement pastes, II. The corrosion behaviour of steel reinforcement’,Cement and Concrete Research 5 (1975) 1–13.

    Article  Google Scholar 

  12. Glass, G.K., Page, C.L. and Short, N.R., ‘Factors affecting the corrosion rate steel in carbonated mortars’,Corrosion Science,32(12) (1991) 1283–1294.

    Article  Google Scholar 

  13. Hardon, R.G. Lambert, P. and Page, C.L., ‘Relationship between electrochemical noise and corrosion rate of steel in salt contaminated concrete’,British Corrosion Journal,23 (4) (1988) 225–228.

    Google Scholar 

  14. Lambert, P., Page, C.L. and Vassie, P.R.W., ‘Investigations of reinforcement corrosion. 2. Electrochemical monitoring of steel in chloride-contaminated concrete’,Materials and Structures/Matériaux et Constructions 24 (1991) 351–358.

    Google Scholar 

  15. Polder, R, Tondi, A. and Cigna, R., ‘Concrete resistivity and corrosion rate of reinforcement’, TNO report 93-BT-r0170, TNO Delft (1993).

  16. Pollet, V. and Raharinaivo, A., ‘Assessment of damage by corrosion: Techniques for predicting the extension of rebar corrosion’, International Symposium on Bridge Engineering and Management in Asian countries, PIARC, Jakarta (Indonesia) 10–13, September (1996).

  17. Raharinaivo, A.L. and Carpio, J.J., ‘The steeping down the current method: a new corrosion control for cathodic protection of steel’, NACE Conference Corrosion '92, Nashville, Paper 228, (1992) 9.

  18. Dhouibi-Hachani, L, Raharinaivo, A., Triki, E. and Fiaud, C., ‘Assessing the corrosion of rebars in concrete deteriorated by sulfates and carbonation’, Int. Conference on Corrosion and Corrosion Protection of steel in Concrete. Ed. R.N. Swamy, Sheffield, July (1994) 258–267.

  19. Berke, N.S., Shen, D.F. and Sundberg, K.M., ‘Comparison of the polarization resistance technique to the macrocell corrosion technique’, Corrosion Rates of steel in Concrete, ASTM-1065, N. Berke, V. Chacker and D. Whiting Eds. (1990)38–51.

  20. Hope, B.B. and Ip, A.K.C. ‘Corrosion of steel in concrete made with slag cement’,ACI Materials Journal (Nov.–Dec. 1987) 525–531.

  21. Hansson, C.M., ‘Comments on electrochemical measurements of the rate of corrosion of steel in concrete’,Cement & Concrete Res.,14 (1984) 574–584.

    Article  Google Scholar 

  22. Gulikers, J., ‘Numerical simulation of corrosion rate determination by linear polarization’, Rilem PRO 18, Workshop on Measurement and interpretation of on-site corrosion rate (Mesina), C. Andrade, C. Alonso, J. Fullea, J. Polimón and J. Rodriguez Eds., Madrid, Feb. (1999).

  23. Pedeferri, P., ‘Corrosion and Protection of Metallic Materials’, Librería Politécnico de Milano, Italy (1978) (only in Italian).

    Google Scholar 

  24. González, J.A., Molina, A., Escudero, M.L. and Andrade, C., ‘Errors in the electrochemical evaluation of very small corrosion rates. Part. I. Polarization resistance method applied to corrosion of steel in concrete’,Corrosion Science (UK)25 (1985) 917–930.

    Article  Google Scholar 

  25. Glass, G.K., Page, C.L., Short, N.R. and Yu, S.W., ‘An investigation of galvanostatic transient methods used to monitor the corrosion rate of steel in concrete’,Corrosion Science 35 (5–8) (1993) 1585–1592.

    Article  Google Scholar 

  26. Newton, C.J. and Sykes, J.M., ‘A galvanostatic pulse technique for investigation of steel corrosion in concrete’,Corrosion Science 28 (1988) 1051–1074.

    Article  Google Scholar 

  27. Pollet, V., Grimaldi, G. and Raharinaivo, A., ‘Corrosion rate of steel in carbonated concrete measured with polarization resistance method and a new transient technique’, Paper I-OR14, EUROCORR'96, Nice, France 24–27 Sept. (1996).

  28. Elsener, B., Klinhoffer, O., Frolund, T., Rislund, E., Schiegg, Y. and Böhni, H., ‘Assessment of reinforcement corrosion by means of glavanostatic pulse technique’, Int. Conference on Repair of Concrete Structures, Svolvær, Norway, Edited by A. Blackvoll, May (1997) 391–400.

  29. Feliú, S., González, J.A., Andrade, C. and Feliú, V., ‘The determination of the corrosion rate of steel in concrete by a non-stationary method’,Corrosion Science 26 (1986) 961–970.

    Article  Google Scholar 

  30. Hladky, K., Callow, L.M. and Dawson, J., ‘Corrosion rates from impedance measurements: an introduction’,British Corrosion J.,15 (1) (1980) 20–25

    Google Scholar 

  31. Wenger, F., Galland, J., Lemoine, L., ‘Méthode de contrôle de la corrosion des armatures de béton en milieu marin’, International Symposium on Behaviour of offshore concrete structures, Brest, France, October (1980).

  32. Andrade, C. and Castelo, V., ‘Practical measurement of the A.C. Impedance of steel bars embedded on concrete by means of a Spectrum Analyzer, Fast Fourier Transform’,British Corrosion Journal (UK)19 (1984) 93–100.

    Google Scholar 

  33. Sagüés, A., ‘Electrochemical impedance of corrosion macrocells on reinforcing steel in concrete’, NACECorrosion 90, Las Vegas, USA, Paper 132 (1990).

  34. Sagüés, A.A., ‘Evaluation of corrosion rate by electrochemical impedance in a system with multiple polarization effects’,Corrosion 89, New Orleans (USA), paper 25, April 17–21, 1989.

  35. Andrade, C., Soler L. and Nóvoa, X.R., ‘Advances in electrochemical impedance measurements in reinforced concrete’, 5th Intern. Symposium on electrochemical methods in Corrosion Research, EMCR'94, Sesimbra, Portugal, Sept, 1994.

  36. Epelboin, I., Gabrielli, C., Keddam, M. and Takenouti, H., ‘Alternating-current impedance measurements applied to corrosion studies and corrosion rate determinations’, ASTM STP 727 ‘Electrochemical Corrosion Testing”, F. Mansfeld and U. Bertocci, Eds., American Society for Testing and Materials (1981) 150–166.

  37. Hachani, L., Carpio, J., Fiaud, C., Raharinaivo, A. and Triki, E., ‘Steel corrosion in concretes deteriorated by chlorides and sulphates: electrochemical study using impedance spectrometry and stepping down the current method’,Cement and Concrete Research,22 (1992) 55–66.

    Article  Google Scholar 

  38. Feliú, S., Galvan, J.C., Feliú, Jr., S., Bastidas, J.M., Simancas, J., Morcillo, M. and Almeida, E.M., ‘An electrochemical impedance study of the behaviour of some pretreatments applied to rusted steel surfaces’,Corrosion Science,35 (5–8) (1993) 1351–1358.

    Article  Google Scholar 

  39. Mansfeld, F., ‘Recording and analysis of AC impedance data for corrosion studies. I. Background and methods of analysis’,Corrosion (NACE)36 (5), Mayo (1981).

  40. Elsener, B., Hug, A., Bürchler, D. and Böhni, H., ‘Evaluation of localized corosion of steel in concrete by galvanostatic pulse technique’, Conference on “Corrosion of Reinforcement in Concrete Construction”, C.L. Page, P.B. Bamforth and J.L. Figg Eds. SCI, Cambridge (1996) 264–272.

    Google Scholar 

  41. González, J.A., Andrade, C., Alonso, C. and Feliú, S., ‘Comparison of rates of general corrosion and maximum pitting penetratoon on concrete embedded steel reinforcements’,Cement & Concrete Research,25(2) (1995) 257–264.

    Article  Google Scholar 

  42. Andrade, C., Alonso, C. and González, J.A., ‘An initial effort to use corrosion rates measurements for estimating rebar durability’, Corrosion Rates of Steel in Concrete ASTM STP-1065, N. Berke, V. Chacker and D. Whiting Eds. (1990) 29–37.

  43. Mansfeld, F., ‘The relationship between galvanic current and dissolution rates’,Corrosion (NACE)29(10) (1973) 403–405.

    Google Scholar 

  44. Andrade, C., Maribona, I.R., Feliú, S., González, J.A. and Feliú Jr., S., ‘The effect of macrocells between active and passive areas of steel reinforcements’,Corrosion Science 33 (2) (1992) 237–249.

    Article  Google Scholar 

  45. Andrade, C., Merino, P., Nóvoa, X.R., Pérez, M.C., M.C. and Soler, L., ‘Passivation of reinforcing steel in concrete’,Materials Science Forum 192–194 (1995) 891–898.

    Article  Google Scholar 

  46. Andrade, C., Bolzoni, F., Cabeza, M., Nóvoa, X.R. and Pérez, M.C., ‘Measurement of steel corrosion in concrete by electrochemical techniques: influence of the redox processes in oxide scales’, in ‘Electrochemical Approach to Selected Corrosion and Corrosion Control Studies, European Federation of Corrosion Pub., no. 28, P.L. Bonora and F. Deflorian Eds. The Institute of materials, London, UK, Cap. 25, (2000) 332–343.

    Google Scholar 

  47. Andrade, C., Keddam, M., Nóvoa, X.R., Pérez, M.C., Rangel, M.C. and Takenouti, H., ‘Elecrochemical behaviour of steel rebars in concrete: influence of environmental factors and cement chemistry’,Electrochimica Acta,46(24–25) (2001) 3905–3912.

    Article  Google Scholar 

  48. Alonso, C., Andrade, C. Izquierdo, M., Nóvoa, X.R. and Pérez, M.C., ‘Effect of protective oxide scales in the macrogalvanic behaviour of concrete reinforcements’,Corrosion Science 40(8) (1998) 1379–1389.

    Article  Google Scholar 

  49. Feliú, S., González, J.A., Andrade, C. and Feliú, V., ‘Determining polarization resistance in reinforced concrete slabs’,Corrosion Science 29(1) (1989) 105–113.

    Article  Google Scholar 

  50. Seghal, A., Kho, Y.T., Osseo-Asare, K. and Pickering, H.W., ‘Comparison of corrosion rate-measuring devices for determining corrosion rate of steel in concrete systems’,Corrosion Engineering 48 (1992) 871–880.

    Article  Google Scholar 

  51. Andrade, C. and Alonso, C., ‘Corrosion rate monitoring in the laboratory and on-site’,Construction and Building Materials 10(5) (1996) 315–328.

    Article  Google Scholar 

  52. Elsener, B. and Böhni, H., ‘Galvanostatic pulse measurements. Rapid on-site corrosion monitoring’, Int. Conference on Corrosion and Corrosion Protection of steel in Concrete, Sheffield, UK, Ed. R.N. Swamy, July (1994) 236–246.

  53. Mietz, J. and Isecke, B., ‘Electrochemical potential monitoring on reinforced concrete structures using anodic pulse techniques’, Conference on ‘Non-destructive Testing in Civil Engineering’, H. Bungey Ed., The British Institute of NDT,2 (1993) 567.

  54. Feliú, S., González, J.A. and Andrade, C., ‘Multiple-electrode method for estimating the polarization resistance in large structures’,Journal of Applied Electrochemistry,26 (1996) 305–309.

    Google Scholar 

  55. Andrade, C., Sarria, J. and Alonso, C., ‘Statistical study on simultaneous monitoring of rebar corrosion rate and internal relative humidity in concrete structures exposed to the atmosphere’, Conference on Corrosion of Reinforcement in Concrete Constructio, C.L. Page, P.B., Bamforth and J.L. Figg Eds. SCI, Cambridge (1996) 233–242.

    Google Scholar 

  56. Tuuti, K., ‘Corrosion of steel in concrete’, Swedish Cement and Concrete Research Institute (CBI) No. 4-82, Stockholm (1982).

  57. Andrade, C. and alonso, C., ‘Values of corrosion rate of steel in concrete in order to predict service life of concrete structures,’, ASTM STP-1194 ‘Application of accelerated corrosion tests to service life prediction of materials’, G. Cragnolino and U. Sridhan Eds. (1994) 282–295.

  58. Alonso, C., Andrade, C., González, J.A., ‘Relation between concrete resistivity and corrosion rate of the reinforcements in carbonated mortar made with several cement types’,Cement and Concrete Res.,18 (1988) 687–698.

    Article  Google Scholar 

  59. Andrade, C., Sarria, J. and Alonso, C., ‘Relation between climate and corrosion rate’, Workshop on Measurement and Interpretation of on-site corrosion rates, MESINA, RILEM PRO 18, C. Andrade, C. Alonso, J. Fullea, J. Polimon and J. Rodríguez, Eds., RILEM Publ., Madrid (Feb. 1999) 123–141.

    Google Scholar 

  60. Andrade, C., Sarria, J. and Alonso, C., ‘Relative humidity in the interior of concrete exposed to natural and artificial weathering’,Cement and Concrete Research 29 (1999) 1249–1259.

    Article  Google Scholar 

  61. Andrade, C. and Alonso, C., ‘On-site measurements of corrosion rate of reinforcements’,Construction and Building Materials 15 (2001) 141–145.

    Article  Google Scholar 

  62. Andrade, C., Fullea, J. and Alonso, C., ‘The use of the graph corrosion rate-sensitivity in the measurement of the corrosion current’, Workshop on Measurement and Interpretation of On-Site Corrosion Rates, MESINA, RILEM PRO, 18, C. Andrade, C. Alonso, J. Fullea, J. Polimon and J. Rodríguez, Eds. RILEM Pub., Madrid (Feb. 1999) 157–165.

    Google Scholar 

  63. Andrade, C., Alonso, C. González, J.A. and Rodríguez, J., ‘Remaining service life of corroded structures’, Proceedings of IABSE Symposium on Durability of Structures, Lisbon, September 1989, 359–363.

  64. Rodríguez, J., Aragoncillo, J., Andrade, C. and Izquierdo, D., ‘Manual for assessing corrosion-affected concrete structures’, CONTECVET IN309021. www.ietcc.csic.es/public_elec/Formulario_Contecvet.html.

  65. Rodríguez, J., Ortega, L.M. and Casal, J.: Corrosion of reinforcing bars and service life of reinforced concrete structures: corrosion and bond deterioration’, Internation Conference on Concrete Across Borders, Odense (Denmark) Vol. 1 (1994) 215–226.

    Google Scholar 

  66. Rodríguez, J., Ortega, L.M., Aragoncillo, J., Izquierdo, D. and Andrade, C., ‘Structural assessment for residual life calculation of concrete structures affected by reinforcement corrosion’, Int. RILEM Workshop on Life Prediction and aging management of concrete structures, D. Naus Ed., Rilem Publ., Cannes, France (October 2000) 97–111.

    Google Scholar 

  67. Rodríguez, J., Ortega, L.M., Casal, J. and Díez, J.M. ‘Corrosion of reinforcement and service life of concrete structures’, in ‘Durability of Building Materials and components’, Vol. I, C. Sjöström Ed., E&FN Sponn Publ., London (1996) 117–126.

    Google Scholar 

  68. Rodríguez, J., Ortega, L.M., Casal, J. and Díez, J.M., ‘Assessing structural conditions of concrete structures with corroded reinforcements’, Conference on Concrete Repair, Rehabilitation and Protection, Dundee, U.K., R.K. Dhir and M.R. Jones Eds., E&FN Spon Publ., London (June 1996) 65–77.

    Google Scholar 

Download references

Authors

Additional information

contributions from J. Gulikers, R. Polder, R. Cigna, Ø. Vennesland, M. Salta, A. Raharinaivo and B. Elsener

The text presented hereafter is a draft for general consideratïon. Comments should be sent to the TC Chairlady: Dr. Carmen Andrade, CSIC-Instituto de Ciencias de la Construcction “Eduardo Torroja”, Serrano Galvache s/n-Aptdo 19.002, 28033 Madrid, Spain; Tel.:+34 1 302 04 40; Fax: +34 1 302 07 00; Email: andrade@ietcc.csic.es, by 30 May 2005.

TC Membership-Chairlday: C. Andrade, Spain;Secretary: B. Elsener, Switzerland/Italy;Members: C. Alonso, Spain: R. Cigna, Italy; J. Galland, France; J. Gulikers, The Netherlands; U. Nürnberger, Germany; R. Polder, The Netherlands; V. Pollet, Belgium; M. Salta, Portugal; Ø. Vennesland, Norway; R. Weydert, Germany/Luxemburg;Corresponding members; C. Page, UK; C. Stevenson, South Africa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrade, C., Alonso, C. Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method. Mat. Struct. 37, 623–643 (2004). https://doi.org/10.1007/BF02483292

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02483292

Keywords

Navigation