Skip to main content
Log in

Strengthening of historic masonry structures with composite materials

  • Scientific Reports
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This paper deals with the applications of unidirectional fibre-reinforced polymer tendons for the reversible strengthening of masonry monuments. The tendons, anchored to the masonry only at the ends, are circumferentially applied on the external face of the structure and posttensioned to provide horizontal confinement. The relevant properties of fibre-reinforced polymer materials and prestressing systems are summarised; in addition, the concepts for their application, including anchorage, to masonry structures are developed, and a general design procedure is presented. The effectiveness of the strengthening technique is established both analytically, for structures with simple geometries, and numerically, for a real three-dimensional structure with openings, based on the finite element method. The effects of temperature changes on the tendons and the masonry are shown to be negligible. It is concluded that the effectiveness of the proposed method in the consolidation of historic masonry structures is quite satisfactory, especially when the strengthening elements are made of carbon fibre-reinforced polymer.

Résumé

Cet article présente l’utilisation de câbles unidirectionnels en polymère renforcé de fibres pour le renforcement réversible des monuments en maçonnerie. Les câbles, ancrés dans la maçonnerie uniquement aux extrémités, sont appliqués de manière circonférentielle sur la face externe de la structure et précontraints pour fournir un confinement horizontal. On résume les propriété des matériaux polymères renforcés de fibres et les systèmes de précontrainte. Les concepts pour leur application, y compris l’ancrage, aux constructions en maçonnerie sont discutés, et une procédure générale de conception est présentée. L’efficacité de la technique de renforcement est établie à la fois analytiquement, pour des constructions à gémétrie simple, et numériquement, pour de véritables constructions à trois dimensions ayant des ouvertures, sur la base de la méthode des éléments finis. Il est montré que les effets des variations de température sur les câbles et sur la maçonnerie sont négligeables. On conclut que l’efficacité de la méthode proposée pour la consolidation des constructions historiques en maçonnerie est tout à fait satisfaisante, surtout lorsque les éléments de renforcement sont constitués de polymère renforcé de fibres en carbone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Charter of Venice, ‘Decisions and resolutions’, in Proceedings of the 2nd International Congress for Architects and Technicians of Historic Monuments, Venezia, 1964,5, 25–31 (in French).

  2. United Nations Development Program/United Nations Industrial Development Organization, ‘Building Construction Under Seismic Conditions in the Balkan Region, Vol. 6: Repair and Strengthening of Historical Monuments and Buildings in Urban Nuclei’ (UNDP/UNIDO Proj. RER/79/015 Vienna, 1984).

  3. Wenzel, F., ‘On the structural repair of masonry’, in ‘Structural Repair and Maintenance of Historical Buildings’ (Computational Mechanics Publications, Southampton, 1989) 83–94.

    Google Scholar 

  4. Miltiadou, A. and Delinicola, E., ‘Earthquake resistant preventive measures to consolidate a historical rampart’ in Proceedings of the 8th European Conference on Earthquake Engineering, Lisbon,11.2 (1986) 41–48.

  5. Boh, K., ‘Strengthening of Pisa Tower by external post-tensioning’, in ‘Structural Preservation of the Architectural Heritage’, Proceedings of IABSE Symposium, Rome, 1993, 715–716.

  6. Croci, G., ‘Structural aspects in restoring monuments’, inIbid. ‘Structural Preservation of the Architectural Heritage’, Proceedings of IABSE Symposium, Rome, 1993, 13–28.

  7. Zurli, F. and Viola, R. M., ‘Damage and repair of the St. Charles Basilica in Rome’, inIbid. ‘Structural Preservation of the Architectural Heritage’, Proceedings of IABSE Symposium, Rome, 1993, 417–423.

  8. Triantafillou, T. C. and Fardis, M. N., ‘Advanced composites for strengthening historic structures’, inIbid. ‘Structural Preservation of the Architectural Heritage’, Proceedings of IABSE Symposium, Rome, 1999, 541–548.

  9. Hull, D., ‘An Introduction to Composite Materials’ (Cambridge University Press, 1981).

  10. Preis, L. and Bell, T. A., ‘Fibreglass tendons for post-tensioning concrete bridges’, Transportation Research Record 1118 (National Research Council, Washington, D.C., 1986) 77–82.

    Google Scholar 

  11. Imperial College of Science and Technology, ‘Engineering Applications of Parafil Ropes’, Proceedings of a Symposium, London, 1988.

  12. Tanigaki, M., Okamoto, T., Tamura, T., Matsubara, S. and Nomura, S., ‘Study of braided aramid fibre rods for reinforcing concrete’, in Proceedings of the 13th IABSE Congress, Helsinki, 1988, 15–20.

  13. Gerritse, A. and Werner, J., ‘Arapree, a non-metallic tendon’, in ‘Advanced Composite Materials in Civil Engineering Structures’, ASCE Spec. Conf., Las Vegas, 1991, 143–154.

  14. Kakihara, R., Kamiyoshi, M., Kumagai, S. and Noritake, K., ‘A new aramid rod for the reinforcement of prestressed concrete structures’, inIbid., ‘Advanced Composite Materials in Civil Engineering Structures’, ASCE Spec. Conf., Las Vegas, 1991 132–142.

  15. Zoch, P., Kimura, H., Iwasaki, T. and Heym, M., ‘Carbon fibre composite cables-a new class of prestressing members’, in Proceedings of the 70th TRB Annual Meeting, Washington D.C., 1991.

  16. Koga, M., Okano, M., Sakai, H., Kawamoto, Y. and Yagi, K., ‘Application of a tendon made of CFRP rods to a post-tensioned prestressed concrete bridge’, in ‘Advanced Composite Materials in Bridges and Structures’, Proceedings of the 1st International Conference, Sherbrooke, Canada, 1992, 405–414.

  17. Machida, A., Editor, ‘State-of-the-art Report on Continuous Fiber Reinforcing Materials’ (Japan Society of Civil Engineers, 1993).

  18. Nanni, A. and Dolan, C. W., Editors, ‘Fiber-reinforced-plastic reinforcement for concrete structures’, Proceedings of International Symposium (ACI SP-138, Detroit, 1993).

  19. ACI Committee 440, ‘State-of-the-Art Report on FRP Reinforcement’ (ACI, Detroit, 1996).

  20. Plevris, N. and Triantafillou, T., “FRP-reinforced wood as structural materials’,ASCE J. Mater. Civ. Engng. 4 (3) (1992) 300–317.

    Google Scholar 

  21. Triantafillou, T. C. and Deskovic, N., ‘Prestressed FRP sheets as external reinforcement of wood members’,ASCE J. Struct. Engng. 118 (5) (1992) 1270–1284.

    Google Scholar 

  22. Schwegler, G., ‘Masonry construction strengthened with fibre composites in seismically endangered zones’, in Proceedings of the 10th European Conference on Earthquake Engineering, Vienna, 1994.

  23. Triantafillou, T. C. and Fardis, M. N., ‘Strengthening of historic masonry structures with fibre reinforced plastic composites’, in ‘Dynamics, Repairs & Restoration’, Proceedings of the 4th International Conference on Structural Studies of Historical Buildings (STREMA 95), Chania, Greece, May, 1995, 129–136.

  24. Karantoni, F. V., Fardis, M. N., Vintzeleou, E. and Harisis, A., ‘Effectiveness of seismic strengthening measures’, in ‘Structural Preservation of the Architectural Heritage’, Proceedings of IABSE Symposium, Rome, 1993, 549–556.

  25. Ottosen, N., ‘A failure criterion for concrete’,ASCE J. Engrg. Mech. 103 (4) (1977) 527–535.

    Google Scholar 

  26. Ganz, H. R. and Thuerliman, B., ‘Design of masonry walls under normal force and shear’, in Proceedings of the 8th International Brick/Block Masonry Conference, Dublin, 1988, 1447–1457.

  27. Koenig, G., Mann, W. and Oetes, A., ‘Untersuchungen zum verhalten von mauerwarksbauten unter erdbeben eienwirkung’, Koenig und Heunisch, Frankfurt, 1988.

    Google Scholar 

  28. Dialer, C., ‘Some remarks on the strength and deformation behaviour of shear stressed masonry panels under static monotonic loading’, in Proceedings of the 9th International Brick/Block Masonry Conference, Berlin, 1991, 276–283.

  29. FIP Commission on Prestressing Materials and Systems, ‘High-strength Fibre Composite Tensile Elements for Structural Concrete, State-of-Art-Report, 1992.

  30. Karantoni, F. V. and Fardis, M. N., ‘Computed versus observed seismic response and damage of masonry buildings’,ASCE J. Struct. Engng. 118 (7) (1992) 1804–1821.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editorial note Prof. Thanasis Triantafilou is a RILEM Senior Member.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Triantafillou, T.C., Fardis, M.N. Strengthening of historic masonry structures with composite materials. Mat. Struct. 30, 486–496 (1997). https://doi.org/10.1007/BF02524777

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02524777

Keywords

Navigation