Skip to main content
Log in

Solving the infinite-dimensional discrete-time algebraic riccati equation using the extended symplectic pencil

  • Published:
Mathematics of Control, Signals and Systems Aims and scope Submit manuscript

Abstract

In this paper we present results about the algebraic Riccati equation (ARE) and a weaker version of the ARE, the algebraic Riccati system (ARS), for infinite-dimensional, discrete-time systems. We introduce an operator pencil, associated with these equations, the so-called extended symplectic pencil (ESP). We present a general form for all linear bounded solutions of the ARS in terms of the deflating subspaces of the ESP. This relation is analogous to the results of the Hamiltonian approach for the continuous-time ARE and to the symplectic pencil approach for the finite-dimensional discrete-time ARE. In particular, we show that there is a one-to-one relation between deflating subspaces with a special structure and the solutions of the ARS.

Using the relation between the solutions of the ARS and the deflating subspaces of the ESP, we give characterizations of self-adjoint, nonnegative, and stabilizing solutions. In addition we give criteria for the discrete-time, infinite-dimensional ARE to have a maximal self-adjoint solution. Furthermore, we consider under which conditions a solution of the ARS satisfies the ARE as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. F. Curtain and L. Rodman. Comparison theorems for infinite-dimensional Riccati equations.System Control Lett., 15: 153–159, 1990.

    Article  MathSciNet  Google Scholar 

  2. R. F. Curtain and H. J. Zwart.An Introduction to Infinite-Dimensional Linear Systems Theory. Springer-Verlag, Berlin, 1995.

    MATH  Google Scholar 

  3. I. Gohberg, S. Goldberg, and M. A. Kaashoek.Classes of Linear Operators, vol. 1. Operator Theory, Advances and Applications, no. 49. Birkhäuser, Basel, 1990.

    MATH  Google Scholar 

  4. A. Halanay and V. Ionescu.Time Varying Discrete Linear Systems. Operator Theory, Advances and Applications, no. 68. Birkhäuser, Basel, 1994.

    MATH  Google Scholar 

  5. J. W. Helton. A spectral factorization approach to the distributed stable regulator problem; the algebraic Riccati equation.SIAM J. Control Optim., 14(4): 639–661, 1976.

    Article  MathSciNet  Google Scholar 

  6. V. Ionescu and M. Weiss. On computing the stabilizing solution of the discrete-time Riccati equation.Linear Algebra Appl., 174: 249–238, 1992.

    Article  MathSciNet  Google Scholar 

  7. T. Kato.Perturbation Theory of Linear Operators. Springer-Verlag, New York, 1966.

    Google Scholar 

  8. V. Kučera. Algebraic Riccati equations: Hermitian and definite solutions. In s. Bittanti, A. J. Laub, and J. C. Willems, editors,The Riccati Equation, pp. 54–88. Springer-Verlag, Berlin, 1991

    Google Scholar 

  9. C. R. Kuiper and H. J. Zwart. Relations between the algebraic Riccati equation and the Hamiltonian for Riesz-spectral systems. Technical Report 1054, Faculty of Applied Mathematics, University of Twente, 1994.

  10. A. J. Laub. Invariant subspace methods for the numerical solution of Riccati equations. In S. Bittanti, A. J. Laub, and J. C. Willems, editors,The Riccati Equation, pp. 163–196. Springer-Verlag, Berlin, 1991.

    Google Scholar 

  11. K. Y. Lee, S. N. Chow, and R. O. Barr. On the control of discrete-time distributed parameter systems.SIAM J. Control, 10 (2): 361–376, 1972.

    Article  MathSciNet  Google Scholar 

  12. H. Logemann. Stability and stabilizability of linear infinite-dimensional discrete-time systems.IMA J. Math. Control Inform, 9: 255–263, 1992.

    Article  MathSciNet  Google Scholar 

  13. J. C. Louis and D. Wexler. The Hilbert space regulator problem and operator Riccati equation under stabilizability.Ann. Soc. Sci. Bruxelles, 105: 101–121, 1991.

    MathSciNet  Google Scholar 

  14. J. C. Oostveen. Relations between the discrete-time algebraic Riccati equation and the extended symplectic pencil. Master's thesis, University of Twente, November 1994.

  15. J. C. Oostveen and H. J. Zwart. Solving the infinite-dimensional discrete-time algebraic Riccati equation using the extended sympletic pencil. Technical Report W-9511, Department of Mathematics, University of Groningen, 1995.

  16. S. A. Pohjolainen. On the discrete-time regulator problem in infinite-dimensional spaces.J. Optim. Theory Appl., 30: 319–327, 1980.

    Article  MathSciNet  Google Scholar 

  17. K. M. Przyłuski. The Lyapunov equation and the problem of stability for linear bounded discrete-time systems in Hilbert space.Appl. Math. Optim., 6: 97–112, 1980.

    Article  MathSciNet  Google Scholar 

  18. K. M. Przyłuski. Stability of linear infinite-dimensional systems revisited.Internat J. Control, 48(2): 513–523, 1988.

    MathSciNet  Google Scholar 

  19. A. C. M. Ran and R. Vreugdenhil. Existence and comparison theorems for algebraic Riccati equations for continuous-and discrete-time systems.Linear Algebra Appl., 99: 63–83, 1988.

    Article  MathSciNet  Google Scholar 

  20. G. W. Stewart. Error and perturbation bounds for subspaces associated with certain eigenvalue problems.SIAM Rev., 12: 727–764, 1976.

    Google Scholar 

  21. A. A. Stoorvogel and A. Saberi. The discrete Riccati equation and linear matrix inequality. Preprint, 1994.

  22. R. M. Young.An Introduction to Non-Harmonic Fourier Series. Academic Press, New York, 1980.

    Google Scholar 

  23. J. Zabczyk. Remarks on the control of discrete-time distributed parameter systems.SIAM J. Control, 12(4): 721–735, 1974.

    Article  MathSciNet  Google Scholar 

  24. J. Zabczyk. On optimal stochastic control of discrete-time systems in Hilbert space.SIAM J. Control, 13(6): 1217–1234, 1975.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oostveen, J., Zwart, H. Solving the infinite-dimensional discrete-time algebraic riccati equation using the extended symplectic pencil. Math. Control Signal Systems 9, 242–265 (1996). https://doi.org/10.1007/BF02551329

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02551329

Key words

Navigation