Skip to main content
Log in

Twisted plywood architecture of collagen fibrils in human compact bone osteons

  • Clinical Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

Ultrathin sections of decalcified human compact bone, observed by transmission electron microscopy, reveal that collagen fibrils can be distributed in the form of a superimposed series of nested arcs. This characteristic pattern has never been interpreted in previous works on compact bone structure. We demonstrate, by goniometric observations at the ultrastructural level, that such series of nested arcs are a consequence of the “twisted plywood” architecture of collagen fibrils in the compact bone matrix. In the same specimens, an “orthogonal plywood” disposition of collagen fibrils is also observed; a transition exists between these two types of orders. We show that the “twisted plywood structure” accounts well for certain optical properties of osteons, observed in polarizing microscopy, described as “intermediate osteons.” The particular geometry of collagen fibrils, leading to nested arcs in oblique sections, is analogous to the distribution of molecules in certain liquid crystals (called cholesteric liquid crystals). The principle of a liquid crystalline self-assembly of the collagen matrix in bone is therefore discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gebhardt W (1906) Ueber funktionell wichtige anordnungsweisen der gröberen und feineren bauelemente der wilberltierknochens. Roux Arch Entw Mech 20:187–322

    Google Scholar 

  2. Vincent J (1958) Microradiographie des lamelles de l'os haversien. Arch Biol 69:561–575

    Google Scholar 

  3. Smith JW (1960) Collagen fibre patterns in mammalian bone. J Anat 94:329–343

    PubMed  CAS  Google Scholar 

  4. Boyde A, Hobdell MH (1969) Scanning electron microscopy of lamellar bone. Z Zellforsch 93:213–231

    Article  PubMed  CAS  Google Scholar 

  5. Frank R, Frank P, Klein M, Fontaine R (1955) Microscopie électronique de l'os humain. Arch Anat Microsc Morph Exp 44:191–206

    CAS  Google Scholar 

  6. Ascenzi A, Bonnuci E (1967) The tensile properties of single osteons. Anat Rec 161:375–386

    Article  Google Scholar 

  7. Ascenzi A, Bonnuci E (1968) The compressive properties of single osteons. Anat Rec 161:377–391

    Article  PubMed  CAS  Google Scholar 

  8. Frasca P, Harper RA, Katz JL (1977) Collagen fiber orientations in human secondary osteons. Acta Anat 98:1–13

    Article  PubMed  CAS  Google Scholar 

  9. Boyde A, Bianco P, Portigliatti-Barbos M, Ascenzi A (1984) Collagen orientation in compact bone I. A new method for the determination of the proportion of collagen parallel to the plane of compact bone sections. Metab Bone Dis & Rel Res 5:299–307

    Article  CAS  Google Scholar 

  10. Portigliatti-Barbos M, Bianco P, Ascenzi A, Boyde A (1984) Collagen orientation in compact bone II. Distribution of lamellae in the whole of the human femoral schaft with reference to its mechanical properties. Metab Bone Dis & Rel Res 5:309–315

    Article  CAS  Google Scholar 

  11. Black J, Mattson R, Korostoff E (1974) Haversian osteons: size, distribution, internal structure and orientation. J Biomed Mater Res 8:299–319

    Article  PubMed  CAS  Google Scholar 

  12. Bouligand Y (1972) Twisted fibrous arrangements in biological materials and cholesteric mesophases. Tissue and Cell 4:189–217

    PubMed  CAS  Google Scholar 

  13. Bouligand Y, Giraud-Guille MM (1985) Spatial organization of collagen fibrils in skeletal tissues: analogies with liquid crystals. In: Bairati A, Garrone R (eds) Biology of invertebrate and lower vertebrate collagens. Plenum Publishing Corporation

  14. Pritchard JJ (1956) General anatomy and histology of bone. In: bourne GH (ed) The biochemistry and physiology of bone. Academic Press, New York, p 25

    Google Scholar 

  15. Chambers TJ, Revell PA, Fuller K, Athanassou NA (1984) Resorption of bone by isolated rabbit osteoclasts. J Cell Sci 66:383–399

    PubMed  CAS  Google Scholar 

  16. Livolant F, Giraud MM, Bouligand Y (1978) A goniometric effect observed in sections of twisted fibrous materials. Biol Cell 31:159–168

    Google Scholar 

  17. Junqueira LCU, Bignolas G, Brentani RR (1979) Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochemical Journal 11:447–455

    Article  PubMed  CAS  Google Scholar 

  18. Reynolds ES (1963) The use of lead citrate at high pH as an electron opaque stain in EM. J Cell Biol 17:208–211

    Article  PubMed  CAS  Google Scholar 

  19. Giraud-Guille MM (1986) Direct visualization of microtomy artefacts in sections of twisted fibrous extracellular matrices. Tissue Cell 18:603–620

    Article  PubMed  CAS  Google Scholar 

  20. Bouligand Y (1986) Theory of microtomy artefacts in arthropod cuticle. Tissue Cell 18:621–643

    Article  PubMed  CAS  Google Scholar 

  21. Bouligand Y (1965) Sur une architecture torsadée répandue dans de nombreuses cuticules d'arthropodes. Comptes Rendus Acad Sci Paris 261:3665–3668

    Google Scholar 

  22. Bouligand Y (1965) Sur une disposition fibrillaire torsadée commune à plusieurs structures biologiques. Comptes Rendus Acad Sci Paris 261:4864–4867

    CAS  Google Scholar 

  23. Neville AC, Gubb DC, Crawford RM (1976) A new model for cellulose architecture in some plant cell walls. Protoplasma 90:307–317

    Article  Google Scholar 

  24. Mazur GD, Regier JC, Kafatos FC (1982) Order and defects in the silkmoth chorion. A biological analogue of a cholesteric liquid crystal. In: King RC, Akai H (eds) Insect ultrastructure, vol 1, pp 150–185

  25. Livolant F, Bouligand Y (1978) New observations on the twisted arrangement of Dinoflagellate chromosomes. Chromosoma 68:21–44

    Article  Google Scholar 

  26. Bouligand Y, Denèfle JP, Lechaire JP, Maillard M (1985) Twisted architecture in cell-free assembled collagen gels: study of collagen substrates used for cultures. Biol Cell 54:143–162

    PubMed  CAS  Google Scholar 

  27. Garrone R (1978) Phylogenesis of connective tissue. Morphological aspects and biosynthesis of sponge intercellular matrix. In: Robert L, Karger S (eds) Frontiers of matrix biology, vol 5. Basel

  28. Cohen J, Harris WH (1958) The three-dimensional anatomy of haversian systems. J Bone Joint Surgery 40:419–434

    Google Scholar 

  29. Bouligand Y (1978) Liquid crystalline order in biological materials. In: Blumstein A (ed) Liquid crystalline order in polymers. Academic Press, New York, San Francisco, London, pp 261–297

    Google Scholar 

  30. Keller A (1952) Morphology of crystallizing polymers. Nature 169:913–914

    Article  CAS  Google Scholar 

  31. Blackett NM (1955) On the organisation of collagen fibrils in bone. Biophys Bioch Acta 16:161–162

    Article  CAS  Google Scholar 

  32. Bouligand Y (1986) Fibroblasts, morphogenesis and cellular automata. In: E Bienenstock et al. (ed) NATO ASI series F20, Disordered systems and biological organization. Springer-Verlag, Berlin, pp 367–378

    Google Scholar 

  33. Livolant F (1986) Cholesteric liquid crystalline phases given by three helical biological polymers: DNA, PBLG and Xanthan. A comparative analysis of their textures. J Physique 47:1605–1616

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giraud-Guille, M.M. Twisted plywood architecture of collagen fibrils in human compact bone osteons. Calcif Tissue Int 42, 167–180 (1988). https://doi.org/10.1007/BF02556330

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02556330

Key words

Navigation