Skip to main content
Log in

An endothelial cell-smooth muscle cell co-culture model for use in the investigation of flow effects on vascular biology

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Flow and the associated shear stress have been shown to play an active role in the regulation of the structure and function of endothelial cells (EC)in vitro. Although cultured EC subjected to flow exhibit an elongated morphology and a decreased cell growth rate rather like those observedin vivo, there are differences in morphology and growth rate, as well as other characteristics, betweenin vitro andin vivo EC. This suggests that flow is only one of the many factors affecting EC differentiationin vivo. In this study, a co-culture model system was designed, which includes smooth muscle cells (SMC), a matrix of collagen type I, and a confluent monolayer of EC, and this simplified model of the arterial wall was subjected to a steady, laminar shear stress of 10 and 30 dyn/cm2. Under non-flow conditions, EC exhibited an elongated shape, but with a random orientation. In response to flow, there was an alignment with the direction of flow. This alignment occurred more rapidly at 30 dyn/cm2 than at 10 dyn/cm2. The collagen matrix was found to be primordial in the maintenance of a quiescent endothelium, even in the absence of SMC and flow, suggesting the importance of an organized extracellular matrix (ECM) in the differentiation of cellsin vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Acevedo, A. D., S. S. Bowser, M. E. Gerritsen, and R. Bizios. Morphological and proliferative responses of endothelial cells to hydrostatic pressure: role of FGF.J. Cell Physiol. 157:603–614, 1993.

    Article  PubMed  CAS  Google Scholar 

  2. Antonelli-Orlidge, A., K. B. Saunders, S. Smith, and P. A. D'Amore. An activated form of transforming growth factor β is produced by cocultures of endothelial cells and pericytes.Proc. Natl. Acad. Sci. USA 86:4544–4548, 1989.

    Article  PubMed  CAS  Google Scholar 

  3. Allen, T. D., S. L. Schor, and A. M. Schor. An ultrastructural review of collagen gels: a model system for cell-matrix, cell-basement membrane and cell-cell interactions.Scanning Electron Microscopy 1984(1):375–390, 1984.

    Google Scholar 

  4. Buck, R. C.. Contact guidance in the subendothelial space. Repair of rat aortain vitro.Exp. Mol. Pathol. 31:275–283, 1979.

    Article  PubMed  CAS  Google Scholar 

  5. Davies, P. F. Vascular cell interactions with special reference to the pathogenesis of atherosclerosis.Lab. Invest. 55(1):5–24, 1986.

    PubMed  CAS  Google Scholar 

  6. Deck, J. D. Endothelial cell orientation on aortic valve leaflets.Cardiovasc. Res. 20:760–767, 1986.

    PubMed  CAS  Google Scholar 

  7. Diamond, S. L., S. G. Eskin, and L. V. McIntire. Fluid flow stimulates tissue plasminogen activator secretion by cultured human endothelial cells.Science 243:1483–1485, 1989.

    Article  PubMed  CAS  Google Scholar 

  8. Frangos, J. A., L. V. McIntire, S. G. Eskin, and C. L. Ives. Flow effects on prostacyclin production by cultured human endothelial cells.Science 227:1477–1479, 1985.

    Article  PubMed  CAS  Google Scholar 

  9. Freudenberg, N. General properties of endothelial cells. In: Fluid Dynamics as a Localizing Factor for Atherosclerosis, edited by G. Schettler, R. M. Nerem, H. Schmid-Schönbein, H. Mörl, and C. Diehm. Berlin: Springer-Verlag, 1985.

    Google Scholar 

  10. Gospodarowicz, D., and C. R. Ill. The extracellular matrix and the control of proliferation of vascular endothelial cells.J. Clin. Invest. 65:1351–1364, 1980.

    PubMed  CAS  Google Scholar 

  11. Harris, A. K., D. Stopak, and P. Wild. Fibroblast traction as a mechanism for collagen morphogenesis.Nature 290:249–251, 1981.

    Article  PubMed  CAS  Google Scholar 

  12. Herman, I. M., A. M. Brant, V. S. Warty, J. Bonaccorso, E. C. Klein, R. L. Kormos, and H. S. Borovetz. Hemodynamics and the vascular endothelial cytoskeleton.J. Cell Biol. 105:291–302, 1987.

    Article  PubMed  CAS  Google Scholar 

  13. Ingber, D. E., and Folkman, J. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesisin vitro: role of extracellular matrix.J. Cell Biol. 109:317–330, 1989.

    Article  PubMed  CAS  Google Scholar 

  14. Ives, C. L., S. G. Eskin, and L. V. McIntire. Mechanical effects on endothelial cell morphology:in vitro assessment.In Vitro Cel. Dev. Biol. 22(9):500–507, 1986.

    CAS  Google Scholar 

  15. Klebe, R. L., H. Caldwell, and S. Milam. Cells transmit spatial information by orienting collagen fibers.Matrix 9: 451–458, 1989.

    PubMed  CAS  Google Scholar 

  16. Levesque, M. J. and R. M. Nerem. The elongation and orientation of cultured endothelial cells in response to shear stress.J. Biomech. Eng. 107:341–347, 1985.

    Article  PubMed  CAS  Google Scholar 

  17. Levesque, M. J., D. Liepsch, S. Moravec, and R. M. Nerem. Correlation of endothelial cell shape and wall shear stress in a stenosed dog aorta.Arteriosclerosis 6(2):220–229, 1986.

    PubMed  CAS  Google Scholar 

  18. Levesque, M. J., and R. M. Nerem. The study of rheological effects on vascular endothelial cells in culture.Biorhelogy 26(2):345–357, 1989.

    CAS  Google Scholar 

  19. Lesvesque, M. J., R. M. Nerem, and E. A. Sprague. Vascular endothelial cell proliferation in culture and the influence of flow.Biomaterials 11:702–707, 1990.

    Article  Google Scholar 

  20. Macarak, E. J., and P. S. Howard. Adhesion of endothelial cells to extracellular matrix proteins.J. Cell. Physiol. 116: 76–86, 1983.

    Article  PubMed  CAS  Google Scholar 

  21. Mitsumata, M., R. M. Nerem, R. W. Alexander, and B. Berk. Shear stress inhibits endothelial cell proliferation by growth arrest in the G0/G1 phase of the cell cycle.FASEB J. 5(4):A527 (904), 1991.

    Google Scholar 

  22. Nishida, K., D. G. Harrison, J. P. Navas, A. A. Fisher, S. P. Dockery, M. Uematsu, R. M. Nerem, R. W. Alexander, and T. J. Murphy. Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase.J. Clin. Invest. 90:2092–2096, 1992.

    Article  PubMed  CAS  Google Scholar 

  23. Ookawa, K., M. Sato, and N. Ohshima. Changes in the microstructure of cultured porcine aortic endothelial cells in the early stage after applying a fluid-imposed shear stress.J. Biomech. 25(11):1321–1328, 1992.

    Article  PubMed  CAS  Google Scholar 

  24. Sato, M., M. J. Levesque, and R. M. Nerem. Micropipette aspiration of cultured bovine aortic endothelial cells exposed to shear stress.Arteriosclerosis 7:276–286, 1987.

    PubMed  CAS  Google Scholar 

  25. Silkworth, J. B., and W. E. Stehbens. The shape of endothelial cells inen face preparations of rabbit blood vessels.Angiology 26:474–487, 1975.

    Google Scholar 

  26. Thoumine, O., P. R. Girard, and R. M. Nerem. Effect of shear stress on the extracellular matrix of cultured bovine aortic endothelial cells. (abstract).J. Cell. Biochem. 17E (Suppl.): 157, 1993.

    Google Scholar 

  27. Tokunaga, O., J. L. Fan, and T. Watanabe. Atherosclerosis and endothelium. Properties of aortic endothelial and smooth muscle cells cultured at various ambient pressures.Acta Pathol. Japan 39:356–362, 1989.

    CAS  Google Scholar 

  28. Wechezak, A. R., R. F. Viggers, and L. R. Sauvage. Fibronectin and F-actin redistribution in cultured endothelial cells exposed to shear, stress.Lab. Invest. 53(6):639–647, 1985.

    PubMed  CAS  Google Scholar 

  29. Weinberg, C. B., and E. Bell. Regulation of proliferation of bovine aortic endothelial cells, smooth muscle cells and dermal fibroblasts in collagen lattices.J. Cell. Physiol. 122: 410–414, 1985.

    Article  PubMed  CAS  Google Scholar 

  30. Xu, C. B., P. Falke, and L. Stavenow. Interactions between culture bovine arterial smooth muscle cells and endothelial cells; studies on the release of growth inhibiting and growth stimulating factors.Artery 17(6):297–310, 1990.

    PubMed  CAS  Google Scholar 

  31. Ziegler, T. The effect of a steady, laminar shear stress on the proliferation of vascular endothelial cells. Master's Thesis, Georgia Institute of Technology, Atlanta, U.S.A., June 1990.

    Google Scholar 

  32. Ziegler, T., and R. M. Nerem. Tissue engineering a blood vessel: the regulation of vascular biology by mechanical stresses.J. Biol. Chem. 56(2):204–209, 1994.

    CAS  Google Scholar 

  33. Ziegler, T., and R. M. Nerem. Co-culture, of endothelial cells with smooth muscle cells in a matrix of collagen: effect of flow on cell morphology (abstract).J. Cell. Biochem. 18C(Suppl.):282, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziegler, T., Alexander, R.W. & Nerem, R.M. An endothelial cell-smooth muscle cell co-culture model for use in the investigation of flow effects on vascular biology. Ann Biomed Eng 23, 216–225 (1995). https://doi.org/10.1007/BF02584424

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02584424

Keywords

Navigation