Skip to main content
Log in

The application of robust Bayesian analysis to hypothesis testing and Occam's Razor

  • Published:
Journal of the Italian Statistical Society Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Summary

Robust Bayesian analysis deals simultaneously with a class of possible prior distributions, instead of a single distribution. This paper concentrates on the surprising results that can be obtained when applying the theory to problems of testing precise hypotheses when the “objective” class of prior distributions is assumed. First, an example is given demonstrating the serious inadequacy of P-values for this problem. Next, it is shown how the approach can provide statistical quantification of Occam's Razor, the famous principle of science that advocates choice of the simpler of two hypothetical explanations of data. Finally, the theory is applied to multinomial testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berger J. (1985),Statistical Decision Theory and Bayesian Analysis. Springer-Verlag, New York.

    MATH  Google Scholar 

  • Berger J., (1990), Robust Bayesian analysis: sensitivity to the prior.J. Statist. Planning and Inference, 25, 303–328.

    Article  MATH  Google Scholar 

  • Berger J. andDelampady, M., (1987), Testing precise hypotheses (with Discussion).Statistical Science, 2, 317–352.

    MATH  MathSciNet  Google Scholar 

  • Berger J. andSellke T. (1987), Testing of a point null hypothesis: the irreconciliability of significance levels and evidence (with Discussion).J. Amer. Statist. Assoc., 82, 112–139.

    Article  MATH  MathSciNet  Google Scholar 

  • Brush S., (1989), Prediction and theory evaluation: The case of light bending.Science, 246, 1124–1129. See also the responses to this article inScience, 248, 422–423.

    Article  Google Scholar 

  • Casella G. andBerger R. L. (1987), Reconciling Bayesian and frequentist evidence in the one-sided testing problem.J. Amer. Statist. Assoc., 82, 106–111.

    Article  MATH  MathSciNet  Google Scholar 

  • Degroot M. H., (1973), Doing what comes naturally: Interpreting a tail area as a posterior probability or as a like lihood ratio.J. Amer. Statist. Assoc., 68, 966–969.

    Article  MATH  MathSciNet  Google Scholar 

  • Delampady M., (1989a), Lower bounds on Bayes factors for interval hypotheses.J. Amer. Statist. Assoc., 84, 120–124.

    Article  MATH  MathSciNet  Google Scholar 

  • Delampady M. (1989b), Lower bounds on Bayes factors for invariant testing situations.J. Multivariate Anal. 28, 227–246.

    Article  MATH  MathSciNet  Google Scholar 

  • Delampady M. andBerger J., (1990). Lower bounds on posterior probabilities for multinomial and chi-squared tests.Ann. Statist., 18, 1295–1316.

    MATH  MathSciNet  Google Scholar 

  • Dempster A. P., (1973), The direct use of likelihood for significance testing. InProc. of the Conference on Foundational Questions in Statistical Inference (O. Barndorff-Nielsen et al., eds.) 335–352. Dept. Theoretical Statistics, Univ. Aarhus.

  • Dickey J. M., (1977), Is the tail area useful as an approximate Bayes factor?J. Amer. Statist. Assoc. 72, 138–142.

    Article  MATH  MathSciNet  Google Scholar 

  • Edwards W., Lindman H. andSavage L. J. (1963), Bayesian statistical inference for psychological research.Psychological Review, 70, 193–242.

    Article  Google Scholar 

  • Good I. J., (1967), A Bayesian significance test for the multinomial distribution.J. Roy. Statist. Soc. B, 29, 399–431.

    MATH  MathSciNet  Google Scholar 

  • Good I. J., (1983),Good Thinking: The Foundations of Probability and Its Applications. Univ. Minnesota Press, Minneapolis.

    MATH  Google Scholar 

  • Good I. J., (1984), Notes C140, C144, C199, C200 and C201.J. Statist. Comput. Simulation, 19.

  • Gull S., (1988), Bayesian inductive inference and maximum entropy, In G. J. Erickson and C. R. Smith (eds.),Maximum Entropy and Bayesian Methods in Science and Engineering (Vol. 1) 53–74. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Jaynes E. T., (1979), Inference, method, and decision: Towards a Bayesian philosophy of science.J. Amer. Statist. Assoc., 74, 740–741.

    Article  Google Scholar 

  • Jefferys W. H., (1990), Bayesian analysis of random event generator data.Journal for Scientific Exploration, 4, 153–169.

    Google Scholar 

  • Jeffreys H. (1921), Secular perturbations of the inner planets.Science, 54, 248.

    Article  Google Scholar 

  • Jeffreys H., (1939),Theory of Probability, Third Edition, (1961), Oxford: Clarendon Press.

    Google Scholar 

  • Lindley D. V., (1957), A statistical paradox.Biometrika, 44, 187–192.

    MATH  MathSciNet  Google Scholar 

  • Loredo T. J., (1990), From Laplace to Supernova 1987 A: Bayesian inference in astrophysics. In P. Fougere (ed.),Maximum Entropy and Bayesian Methods, 81–142. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Nobili A. M. andWill C. M., (1986), The real value of Mercury's perihelion advance.Nature, 320, 39–41.

    Article  Google Scholar 

  • Poor C. L., (1921), The motions of the planets and the relativity theory.Science, 54, 30–34.

    Article  Google Scholar 

  • Roseveare N. T. (1982),Mercury's Perihelion from Le Verrier to Einstein, Oxford: Clarendon Press.

    MATH  Google Scholar 

  • Shafer G. (1982), Lindley's paradox (with discussion).J. Amer. Statist. Assoc. 77, 325–351.

    Article  MATH  MathSciNet  Google Scholar 

  • Smith, A. F. M. andSpiegelhalter D. J. (1980). Bayes factors and choice criteria for linear models.J. Roy. Statist. Soc. B, 42, 213–220.

    MATH  MathSciNet  Google Scholar 

  • Thorburn W. M., (1918). The myth of Occam's razor.Mind 27, 345–353.

    Article  Google Scholar 

  • Zellner A., (1984), Posterior odds ratios for regression hypotheses: General considerations and some specific results. InBasic Issues in Econometrics (A. Zellner, ed.), 275–305.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by the National Science Foundation, Grant DMS-8923071, and by NASA Contract NAS5-29285 for the hubble Space Telescope.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, J.O., Jefferys, W.H. The application of robust Bayesian analysis to hypothesis testing and Occam's Razor. J. It. Statist. Soc. 1, 17–32 (1992). https://doi.org/10.1007/BF02589047

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02589047

Keywords

Navigation