Skip to main content
Log in

Microstructure of Cu-Co alloys solidified at various supercoolings

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of supercooling on the microstructure of Cu-Co alloys containing 10 to 65 wt pct Co were investigated. Supercooling of the alloys below a characteristic temperature,t SEP, resulted in a metastable phase separation into two liquids: one Co rich (L1) and the other Cu rich (L2). The microstructure of the phase-separated alloys consisted of spherulites of one phase embedded in a matrix of the other. The spherulites in alloys containing less than 40 wt pct Co were solidified from the L1 melt and from L2 in alloys containing more than 55 wt pct Co. Supercooling of copper alloys containing around 50 wt pct Co resulted in a duplex structure of fine and coarse dendrites. Microstructural evidence was presented for the formation of aε-Cu metastable phase in alloys containing less than 30 wt pct Co.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.F. Kelly and J.B. Vander Sande: inChemistry and Physics of Rapidly Solidified Materials, B.J. Berkowitz and R.O. Scattergood, eds., TMS-AIME, Warrendale, PA, 1982, p. 35.

    Google Scholar 

  2. W.J. Boettinger, S.R. Oriel, and R.F. Sekerka: inChemistry and Physics of Rapidly Solidified Materials, B.J. Berkowitz and R.O. Scattergood, eds., TMS-AIME, Warrendale, PA, 45.

  3. A. Munitz and R. Abbaschian: inUndercooled Alloy Phases, C.C. Koch and E.W. Collings, eds., TMS-AIME, Warrendale, PA, 1987, p. 23.

    Google Scholar 

  4. M. Cohen and M.C. Flemings: inRapidly Solidified Crystalline Alloys, S.K. Das, B.H. Kear, and C.M. Adam, eds., TMS-AIME, Warrendale, PA, 1985, p. 3.

    Google Scholar 

  5. S.P. Elder: Ph.D. Dissertation, University of Florida, Gainesville, FL, 1990.

    Google Scholar 

  6. A. Munitz, S.P. Elder, and R. Abbaschian:Metall. Trans. A, 1992, vol. 23A, pp. 1817–27.

    CAS  Google Scholar 

  7. S.P. Elder, A. Munitz, and R. Abbaschian:Mater. Sci. Forum, 1989, vol. 50, p. 137.

    Article  Google Scholar 

  8. Y. Nakagawa:Acta Metall., 1958, vol. 6, p. 704.

    Article  CAS  Google Scholar 

  9. T. Nishizawa and K. Ishida:Bull. Alloy Phase Diagrams, 1984, vol. 5, p. 161.

    CAS  Google Scholar 

  10. A. Munitz and R. Abbaschian:J. Mater. Sci., 1991, vol. 26, pp. 6458–66.

    Article  CAS  Google Scholar 

  11. J.H. Perepezko, Y. Shiahara, J.S. Paik, and M.C. Flemings: inRapid Solidification Processing: Principles and Technologies III, R. Mehrabian, ed., NBS, Gaithersburg, MD, 1982, p. 28.

    Google Scholar 

  12. J.L. Walker: inPhysical Chemistry of Process Metallurgy G.R. St. Pierre, ed., Interscience Publication, New York, NY, 1961, p. 845.

    Google Scholar 

  13. R. Mehrabian:Int. Met. Rev., 1982, vol. 27, p. 185.

    CAS  Google Scholar 

  14. S.J.B. Reed:Electron Microprobe Analysis, Cambridge University Press, Cambridge, United Kingdom, 1977, pp. 175–97.

    Google Scholar 

  15. S.P. Elder and G.J. Abbaschian:Principles of Solidification and Materials Processing, R. Trivedi, J.A. Sekhar, and J. Mazumdar, eds., Oxford Press, New Delhi, 1989, p. 299.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munitz, A., Abbaschian, R. Microstructure of Cu-Co alloys solidified at various supercoolings. Metall Mater Trans A 27, 4049–4059 (1996). https://doi.org/10.1007/BF02595654

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02595654

Keywords

Navigation