Skip to main content
Log in

Macrotransport-solidification kinetics modeling of equiaxed dendritic growth: Part I. Model development and discussion

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

An analytical model that describes solidification of equiaxed dendrites has been developed for use in solidification kinetics-macrotransport modeling. It relaxes some of the assumptions made in previous models, such as the Dustin-Kurz, Rappaz-Thevoz, and Kanetkar-Stefanescu models. It is assumed that nuclei grow as unperturbed spheres until the radius of the sphere becomes larger than the minimum radius of instability. Then, growth of the dendrites is related to morphological instability and is calculated as a function of melt undercooling around the dendrite tips, which is controlled by the bulk temperature and the intrinsic volume average concentration of the liquid phase. When the general morphology of equiaxed dendrites is considered, the evolution of the fraction of solid is related to the interdendritic branching and dynamic coarsening (through the evolution of the specific interfacial areas) and to the topology and movement of the dendrite envelope (through the tip growth velocity and dendrite shape factor). The particular case of this model is the model for globulitic dendrite. The intrinsic volume average liquid concentration and bulk temperature are obtained from an overall solute and thermal balance around a growing equiaxed dendritic grain within a spherical closed system. Overall solute balance in the integral form is obtained by a complete analytical solution of the diffusion field in both liquid and solid phases. The bulk temperature is obtained from the solution of the macrotrasport-solidification kinetics problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Stefanescu, G. Upadhya, and D. Bandyopadhyay:Metall. Trans. A, 1990, vol. 21A, pp. 997–1005.

    CAS  Google Scholar 

  2. M. Rappaz:Int. Mater. Rev., 1989, vol. 34(3), pp. 93–123.

    CAS  Google Scholar 

  3. I. Maxwell and A. Hellawell:Acta Metall., 1975, vol. 23, pp. 229–37.

    Article  CAS  Google Scholar 

  4. I. Dustin and W. Kurz:Z. Metallkd., 1986, vol. 77, pp. 265–73.

    CAS  Google Scholar 

  5. M. Rappaz and P. Thevoz:Acta Metall., 1987, vol. 35, pp. 1487–97 and 2929–33.

    Article  CAS  Google Scholar 

  6. C.Y. Wang and C. Beckermann:Metall. Trans. A, 1993, vol. 24A, pp. 2787–2802.

    CAS  Google Scholar 

  7. L. Nastac and D.M. Stefanescu:Micro/Macro Scale Phenomena in Solidification, ASME, Fairfield, NJ, 1992, HTD-vol. 218/AMD-vol. 139, pp. 27–34.

    Google Scholar 

  8. P. Thevoz, J.L. Desbiolles, and M. Rappaz:Metall. Trans. A, 1989, vol. 20A, pp. 311–22.

    CAS  Google Scholar 

  9. C.S. Kanetkar and D.M. Stefanescu:AFS Trans., 1988, pp. 591–98.

  10. C. Beckermann: inModeling of Casting, Welding, and Advanced Solidification Processes—VI, T.S. Piwonka, W. Woller, and L. Katgerman, eds., TMS, Warrendale, PA, 1993, pp. 181–92.

    Google Scholar 

  11. J. Ni and C. Beckermann:Metall. Trans. A, 1991, vol. 22B, pp. 349–61.

    CAS  Google Scholar 

  12. E.E. Underwood:Metals Handbook, 9th ed., vol. 9,Metallography and Microstructures, ASM, Metals Park, OH, 1985, pp. 123–34.

    Google Scholar 

  13. W.W. Mullins and R.F. Sekerka:J. Appl. Phys., 1963, vol. 34, pp. 323–29.

    Article  CAS  Google Scholar 

  14. R.F. Sekerka:Cryst. Growth, 1973, pp. 403–43.

  15. W. Kurz and D.J. Fisher:Acta Metall., 1981, vol. 29, pp. 11–20.

    Article  CAS  Google Scholar 

  16. L. Nastac and D.M. Stefanescu:Metall. Trans. A, 1993, vol. 24A, pp. 2107–18.

    CAS  Google Scholar 

  17. A. Roosz, E. Halder, and H.E. Exner:Mater. Sci. Technol., 1986, vol. 2, pp. 1149–55.

    CAS  Google Scholar 

  18. T.Z. Kattamis and M.C. Flemings:Trans. TMS-AIME, 1967, vol. 233, p. 992.

    Google Scholar 

  19. U. Feurer and R. Wunderlin:Fachbericht der Deutschen Gesselschaft fur Metallkunde, Oberursel, Germany, 1977.

    Google Scholar 

  20. R.T. DeHoff:Acta Metall., 1991, vol. 39 (10), pp. 2349–60.

    Article  CAS  Google Scholar 

  21. A. Mortensen:Metall. Trans. A, 1991, vol. 22A, pp. 569–74.

    CAS  Google Scholar 

  22. S. Ahuja, C. Beckermann, R. Zakhem, P.D. Weidman, and H.C. deGroh III:Micro/Macro Scale Phenomena in Solidification, ASME, Fairfield, NJ, 1992, HTD-vol. 218/AMD-vol. 139, pp. 85–91.

    Google Scholar 

  23. H.C. deGroh III, P.D. Weidman, R. Zakhem, S. Ahuja, and C. Beckermann:Metall. Trans. B, 1993, vol. 24B, pp. 749–53.

    CAS  Google Scholar 

  24. D.R. Poirier:Metall. Trans. B, 1987, vol. 18B, pp. 245–55.

    CAS  Google Scholar 

  25. C. Beckermann and R. Viskanta:Appl. Mech. Rev., 1993, vol. 46(1), pp. 1–27.

    Article  Google Scholar 

  26. A.G. Guy, V. Leroy, and T.B. Lindemer:Trans. ASM, 1966, vol. 59, p. 517.

    CAS  Google Scholar 

  27. S. Kobayashi:Trans. Iron Steel Inst. Jpn., 1988, vol. 28, pp. 535–41.

    CAS  Google Scholar 

  28. S. Kobayashi, T. Nagamichi, and K. Gunji:Trans. Iron Steel Inst. Jpn., 1988, vol. 28, pp. 543–52.

    CAS  Google Scholar 

  29. A. Kagawa and T. Okamoto: inPhysical Metallurgy of Cast Iron, H. Fredriksson and M. Hillert, eds., North-Holland, Amsterdam, 1985, p. 201.

    Google Scholar 

  30. F. Neumann: inRecent Research on Cast Iron, H.D. Merchant, ed., Gordon and Breach, New York, NY, 1968, p. 659.

    Google Scholar 

  31. T. Imwinkelried, J.L. Desboilles, Ch.A. Gandin, M. Rappaz, S. Rossman, and P. Thevoz: inModeling of Casting, Welding, and Advanced Solidification Processes VI, T.S. Piwonka, V. Voller, and L. Katgerman, eds., TMS, Warrendale, PA, 1993, pp. 63–70.

    Google Scholar 

  32. M. Bobadilla, J. Lacaze, and G. Lesoult:J. Cryst. Growth, 1988, vol. 89, p. 531.

    Article  CAS  Google Scholar 

  33. M.A. Chopra, M.E. Glicksman, and N.B. Singh:Metall. Trans. A, 1988, vol. 19A, pp. 3087–96.

    CAS  Google Scholar 

  34. J. Lipton, M.E. Glicksman, and W. Kurz:Metall. Trans. A, 1987, vol. 18A, pp. 341–45.

    CAS  Google Scholar 

  35. W. Kurz and D.J. Fisher:Fundamentals of Solidification, 2nd ed., Trans Tech Publications, Aedermannsdorf, Switzerland, 1986.

    Google Scholar 

  36. J.S. Kirkaldy:Metall. Trans. A, 1993, vol. 24A, pp. 1689–1721.

    CAS  Google Scholar 

  37. R. Ananth and W.N. Gill:J. Cryst. Growth, 1991, vol. 108, pp. 173–89.

    Article  CAS  Google Scholar 

  38. L. Nastac and D.M. Stefanescu:Metall. Mater. Trans. A, 1996, vol. 27A, pp. 0000–00.

    Google Scholar 

  39. M.E. Glicksman, R.J. Schaefer, and J.D. Ayers:Metall. Trans. A, 1976, vol. 7A, pp. 1747–59.

    CAS  Google Scholar 

  40. H.B. Aaron, D. Fainstein, and G.R. Kotler:J. Appl. Phys., 1970, vol. 41 (11), pp. 4405–09.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nastac, L., Stefanescu, D.M. Macrotransport-solidification kinetics modeling of equiaxed dendritic growth: Part I. Model development and discussion. Metall Mater Trans A 27, 4061–4074 (1996). https://doi.org/10.1007/BF02595655

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02595655

Keywords

Navigation