Skip to main content
Log in

Skewed multivariate models related to hidden truncation and/or selective reporting

  • Published:
Test Aims and scope Submit manuscript

Abstract

The univariate skew-normal distribution was introduced by Azzalini in 1985 as a natural extension of the classical normal density to accommodate asymmetry. He extensively studied the properties of this distribution and in conjunction with coauthors, extended this class to include the multivariate analog of the skew-normal. Arnold et al. (1993) introduced a more general skew-normal distribution as the marginal distribution of a truncated bivariate normal distribution in whichX was retained only ifY satisfied certain constraints. Using this approach more general univariate and multivariate skewed distributions have been developed. A survey of such models is provided together with discussion of related inference questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, B. C. andBeaver, R. J. (2000a). Hidden truncation models.Sankhya Series A, 62:23–35.

    MATH  MathSciNet  Google Scholar 

  • Arnold, B. C. andBeaver, R. J. (2000b). The skew-Cauchy distribution.Statistics and Probability Letters, 49:285–290.

    Article  MATH  MathSciNet  Google Scholar 

  • Arnold, B. C. andBeaver, R. J. (2000c). Some skewed multivariate distributions.American Journal of Mathematical and Management Sciences, 20:27–38.

    MATH  MathSciNet  Google Scholar 

  • Arnold, B. C. andBeaver, R. J. (2002a). An alternative construction of skewed multivariate distributions. Technical Report 270, Department of Statistics, University of California, Riverside.

    Google Scholar 

  • Arnold, B. C. andBeaver, R. J. (2002b). Multivariate survival models incorporating hidden truncation. Technical Report. 269, Department of Statistics, University of California, Riverside.

    Google Scholar 

  • Arnold, B. C., Beaver, R. J., Groeneveld, R. A., andMeeker, W. Q. (1993). The nontruncated marginal of a truncated bivariate normal distribution.Psychometrika, 58:471–188.

    Article  MATH  MathSciNet  Google Scholar 

  • Arnold, B. C., Castillo, E., andSarabia, J. M. (2002). Conditionally specified multivariate skewed distributions.Sankhya Series A (to appear).

  • Azzalini, A. (1985). A class of distributions which includes the normal ones.Scandinavian Journal of Statistics, 12:171–17.

    MathSciNet  MATH  Google Scholar 

  • Azzalini, A. (1986). Further results on a class of distributions which includes the normal ones.Statistica, 46:199–208.

    MATH  MathSciNet  Google Scholar 

  • Azzalini, A. andCapitanio, A. (1999). Statistical applications of the multivariate skew normal distribution.Journal of the Royal Statistical Society B, 61:579–602.

    Article  MATH  MathSciNet  Google Scholar 

  • Azzalini, A. andDalla Valle, A. (1996). The multivariate skew-normal distribution.Biometrika, 83:715–726.

    Article  MATH  MathSciNet  Google Scholar 

  • Balakrishnan, N. andAmbagaspitiya, R. S. (1994). On skew-Laplace distributions. Technical report, Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada.

    Google Scholar 

  • Birnbaum, Z. W. (1950). Effect of linear truncation on a multinormal population.The Annals of Mathematical Statitics, 21:272–279.

    MathSciNet  MATH  Google Scholar 

  • Branco, C. D. andDey, D. K. (2001). A general class of multivariate skew-elliptical distributions.Journal of Multivariate Analysis, 79:99–113.

    Article  MATH  MathSciNet  Google Scholar 

  • Cain, M. (1994). The moment-generating function of the minimum of bivariate normal random variables.The American Statistician 48:124–125.

    Article  MathSciNet  Google Scholar 

  • Capitanio, A., Azzalini, A., andStanghellini, E. (2002). Graphical models for skew normal variates.Scandinavian Journal of Statistics, 29 (to appear).

  • Chiogna, M. (1998). Some results on the scalar skew-normal distribution.Journal of the Italian Statistical Society, 7:1–13.

    Article  Google Scholar 

  • Genton, M. G., Li, H., andLiu, X. (2001). Moments of skew-normal random vectors and their quadratic forms.Statistics and Probability Letters, 51:319–325.

    Article  MATH  MathSciNet  Google Scholar 

  • Gupta, A. K. andChen, T. (2001). Goodness-of-fit tests for the skewnormal distribution.Communications in Statistics, Part C: Computing and Simulation, 30:907–930.

    Article  MATH  MathSciNet  Google Scholar 

  • Gupta, R. C. andBrown, N. (2001). Reliability studies of the skewnormal distribution and its application to a strength-stress model.Communication in Statistics: Theory and Methods, 30:2427–2445.

    Article  MATH  MathSciNet  Google Scholar 

  • Henze, N. (1986). A probabilistic representation of the ‘skew-normal’ distribution.Scandinavian Journal of Statistics, 13:271–275.

    MathSciNet  MATH  Google Scholar 

  • Loperfido, N. (2001). Quadratic forms of skew-normal random vectors.Statistics and Probability Letters, 54:381–387.

    Article  MATH  MathSciNet  Google Scholar 

  • Loperfido, N. (2002). Statistical implications of selectively reported inferential results.Statistics and Probability Letters, 56:13–22.

    Article  MATH  MathSciNet  Google Scholar 

  • Mukhopadhyay, S. andVidakovic, B. (1995). Efficiency of linear Bayes rules for a normal mean: skewed prior class.Journal of the Royal Statistical Society D, 44:469–471.

    Google Scholar 

  • Nelson, L. S. (1964). The sum of values from a normal and a truncated normal distribution.Technometrics, 6:469–470.

    Article  Google Scholar 

  • O’Hagan, A. andLeonard, T. (1976). Bayes estimation subject to uncertainty about parameter constraints.Biometrika, 63:201–203.

    Article  MATH  MathSciNet  Google Scholar 

  • Pewsey, A. (2000). Problems of inference for Azzalini’s skew-normal distribution.Journal of Applied Statistics, 27:859–870.

    Article  MATH  Google Scholar 

  • Roberts, C. (1966). A correlation model useful in the study of twins.Journal of the American Statistical Association, 61:1184–1190.

    Article  MATH  MathSciNet  Google Scholar 

  • Weinstein, M. A. (1964). The sum of values from a normal and a truncated normal distribution.Technometrics, 6:104–105.

    Article  Google Scholar 

References

  • Aigner, D. J., Lovell, C. A. K., andSchmidt, P. (1977). Formulation and estimation of stochastic frontier production function model.Journal of Econometrics, 12:21–37.

    Article  MathSciNet  Google Scholar 

  • Coelli, T., Prasada Rao, D. S., andBattese, G. E. (1998).An introduction to efficiency and productivity analysis, Chapter 8–9, Kluwer Academic Publishers, Boston, Dordrecht, London.

    Google Scholar 

  • Copas, J. B. andLi, H. G. (1997). Inference for non-random samples (with discussion).Journal of the Royal Statistical Society B, 59:55–95.

    Article  MATH  MathSciNet  Google Scholar 

References

  • Arnold, B. C., Balakrishnan, N., andNagaraja, H. N. (1992).A First Course in Order Statistics. John Wiley and Sons, New York.

    MATH  Google Scholar 

  • Bose, R. C. andGupta, S. S. (1959). Moments of order statistics from a normal population.Biometrika, 46:433–440.

    MATH  MathSciNet  Google Scholar 

  • David, H. A. (1981).Order Statistics.Second Edition. John Wiley and Sons, New York.

    MATH  Google Scholar 

References

  • Arjas, E. andGasbarra, D. (1994). Nonparametric Bayesian inference for right-censored survival data, using the Gibbs sampler.Statistica Sinica, 4:505–524.

    MATH  MathSciNet  Google Scholar 

  • Chen, M., Dey, D. K., andShao, Q. (1999). A new skewed link model for dichotomous quantal response data.Journal of the American Statistical Association, 94:1172–1186.

    Article  MATH  MathSciNet  Google Scholar 

  • Gamerman, D. (1991). Dynamic Bayesian models for survival data.Applied Statistics, 40:63–79.

    Article  MATH  Google Scholar 

  • Hougaard, P. (1986). A class of multivariate failure time distributions.Biometrika, 73:671–678.

    MATH  MathSciNet  Google Scholar 

  • Qiou, Z. Q., Ravishanker, N., andDey, D. K. (2000). Multivariate survival analysis with positive stable frailties.Biometrika, 55:637–644.

    Google Scholar 

  • Ravishanker, N. andDey, D. K. (2000). Multivariate survival models with a mixture of positive stable frailities.Methodology and Computing in Applied Probability, 2:293–308.

    Article  MATH  MathSciNet  Google Scholar 

  • Sahu, S. K. andDey, D. K. (2001). Regression with robust frailty distribution in survival analysis. Technical report, Department of Statistics, University of Connecticut, Connecticut.

    Google Scholar 

  • Sahu, S. K., Dey, D. K., Aslanidou, H., andSinha, D. (1997). A Weibull regression model with gamma frailties for multivariate survival data.Lifetime Data Analysis, 6:207–228.

    Article  Google Scholar 

  • Sahu, S. K., Dey, D. K., andBranco, C. D. (2001). A new class of multivariate skew distribution with application to Bayesian regression models. Technical report, Department of Statistics, University of Connecticut, Connecticut.

    Google Scholar 

  • Sinha, D. andDey, D. K. (1997). Semiparametric Bayesian analysis of survival data.Journal of the American Statistical Association, 92:1192–1212.

    Article  MathSciNet  Google Scholar 

  • Stukel, T. (1988). Generalized logistic models.Journal of the American Statistical Association, 83:426–431.

    Article  MathSciNet  Google Scholar 

References

  • Arnold, B. C., Castillo, E., andSarabia, J. M. (1999).Conditional specification of statistical models. Springer Series in Statistics, Springer Verlag, New York.

    MATH  Google Scholar 

  • Arnold, B. C., Castillo, E., andSarabia, J. M. (2001). Conditionally specified distributions: an introduction (with discussion).Statistical Science, 16:249–274.

    Article  MATH  MathSciNet  Google Scholar 

  • Broeck, J. van den, Koop, J. O., andSteel, M. (1994). Stochastic frontier models. A Bayesian perspective.Journal of Econometrics, 61:273–303.

    Article  MATH  Google Scholar 

  • Greene, W. (1990). A gamma-distributed stochastic frontier model.Journal of Econometrics, 46:141–163.

    Article  MathSciNet  MATH  Google Scholar 

  • Meeusen, W. andvan den Broeck, J. (1977). Efficiency estimation from Cobb-Douglas production functions with composed error.International Economic Review, 8:435–444.

    Article  Google Scholar 

  • Stevenson, R. (1980). Likelihood functions for generalized stochastic frontier estimation.Journal of Econometrics, 13:57–66.

    Article  MATH  Google Scholar 

References

  • Rao, C. (1985). Weighted distributions arising out of methods of ascertainment: what population does a sample represent? InA Celebration of Statistics.The ISI Centenary Volume, pp. 543–570. Springer-Verlag, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry C. Arnold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnold, B.C., Beaver, R.J., Azzalini, A. et al. Skewed multivariate models related to hidden truncation and/or selective reporting. Test 11, 7–54 (2002). https://doi.org/10.1007/BF02595728

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02595728

Key Words

AMS subject classification

Navigation