Skip to main content
Log in

Microstructure and fracture toughness of the aged ,β-Ti Alloy Ti-10V-2Fe-M

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Fracture mechanics and tensile tests have been performed on the metastable β-Ti alloy Ti-IOV-2Fe-3AI. A variety of microstructures was established by several combinations of forging and heat treatment resulting in different types, morphologies, and volume fractions of the a-phase which precipitates from the matrix-β phase. Both fracture toughness and ductility are strongly reduced by increasing hardening by the secondary a-phase. An elongated primary a-phase (α p ) shows higher toughness compared to a globular α p -phase. A thick, continuous subgrain boundary a-film lowers the toughness significantly. For microstructures without primary a a grain boundary α-film does not affect the toughness, while the ductility is drastically reduced. Very attractive combinations of fracture toughness and ductility were found for a microstructure without primary a and without grain boundary α. The results are discussed based on the fractographic observations, and a model is proposed which includes the effect of microstructure and slip distribution on the crack nucleation, the crack growth path, and the crack deviation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. H. Froes, R. F. Malone, J. C. Williams, M. A. Greenfield, and J. P. Hirth: inForging and Properties of Aerospace Materials, The Metals Society, 1977, pp. 143-69.

  2. T. W. Duerig and J. C. Williams: inBeta Titanium Alloys in the 80’s, R. R. Boyer and H. W. Rosenberg, eds., TMS-AIME, Warrendale, PA, 1984, pp. 19–67.

    Google Scholar 

  3. J. C. Williams, F. H. Froes, J. C. Chesnutt, C. G. Rhodes, and R. G. Berryman: ASTM STP 651,Toughness and Fracture Behavior of Titanium, 1978, pp. 64–114.

  4. F. H. Froes, J. G. Chesnutt, C. G. Rhodes, and J. C. Williams: ASTM STP,Toughness and Fracture Behavior of Titanium, 1978, p. 115.

  5. R. R. Boyer:Journal of Metals, Mar. 1980, vol. 32, pp. 61–65.

    CAS  Google Scholar 

  6. T. W. Duerig, G. T. Terlinde, and J. C. Williams:Metall. Trans. A, 1980, vol. 11A, pp. 1987–98.

    CAS  Google Scholar 

  7. G. T. Terlinde, T. W. Duerig, and J. C. Williams:Metall. Trans. A, 1983, vol. 14A, pp. 2101–15.

    CAS  Google Scholar 

  8. G. Terlinde, T. W. Duerig, and J. C. Williams: inProc. of 4th Int. Conf. on Titanium, Kyoto, Japan, May 19–22, 1980, vol. 2, pp. 1571-81.

  9. J. A. Feeney and M. J. Blackburn:Metall. Trans., 1970, vol. 1, pp. 3309–23.

    CAS  Google Scholar 

  10. H. Margolin, J. C. Williams, J. C. Chesnutt, and G. Lütjering: inTitanium ’80, Science and Technology, H. Kinura and O. Izumi, eds., TMS-AIME, Warrendale, PA, 1980, vol. I, pp. 169–216.

    Google Scholar 

  11. C. C. Chen and R. R. Boyer:Journal of Metals, July 1979, vol. 31, pp. 33–39.

    CAS  Google Scholar 

  12. G. W. Kuhlman and R. Pishko: inProc. 5th Int. Conference on Titanium, Munich, Sept. 10–14, 1984, pp. 469-76.

  13. I. W. Hall: inProc. 5th Int. Conf. on Titanium, Munich, Sept. 10–14, 1984, pp. 491-98.

  14. I. Weiss and F. H. Froes: inProc. 5th Int. Conf. on Titanium, Munich, Sept. 10–14, 1984, pp. 499–506.

  15. K.-H. Schwalbe and D. Hellmann:J. of Testing and Evaluation, May 1981, pp. 218-27.

  16. J. Heerens, K.-H. Schwalbe, D. Hellmann, J. Knaack, and J. Müller-Roos: “Application of the DC-Potential Drop Method and the Partial Unloading Methods to Fracture Mechanics Tests,” GKSS-Report, 85/E/16.

  17. G. Terlinde, H. J. Ratjen, K.-H. Schwalbe, and G. W. Kuhlman: inProc. of the 6th European Conference on Fracture (ECF6), Amsterdam, The Netherlands, June 15–20, 1986, pp. 1861-78.

  18. T. Hamajima, G. Lütjering, and S. Weissmann:Metall. Trans., 1973, vol. 4, pp. 847–56.

    CAS  Google Scholar 

  19. M. Young, E. Levine, and H. Margolin:Metall. Trans. A, 1979, vol. 10A, pp. 359–65.

    CAS  Google Scholar 

  20. G. Terlinde and G. Lütjering:Metall. Trans. A, 1982, vol. 13A, pp. 1283–92.

    Google Scholar 

  21. R. R. Boyer and G. W. Kuhlman: “Processing-Properties Relationships of Ti-l0V-2Fe-3Al,” Presentation at TMS-AIME Fall Meeting, Oct. 13–17, 1985, Toronto.

  22. S. Suresh:Metall. Trans. A, 1983, vol. 14A, pp. 2375–85.

    Google Scholar 

  23. M. A. Greenfield and H. Margolin:Metall. Trans. A, 1977, vol. 8A, pp. 2649–59.

    Google Scholar 

  24. K.-H. Schwalbe:Eng. Fract. Mech., 1977, vol. 9, pp. 795–832.

    Article  CAS  Google Scholar 

  25. J. P. Hirth and F. H. Froes:Metall. Trans. A, 1977, vol. 8A, pp. 1165–76.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terlinde, G., Rathjen, H.J. & Schwalbe, K.H. Microstructure and fracture toughness of the aged ,β-Ti Alloy Ti-10V-2Fe-M. Metall Trans A 19, 1037–1049 (1988). https://doi.org/10.1007/BF02628388

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02628388

Keywords

Navigation