Skip to main content
Log in

A short-time diffusion correlation for hydrogen-induced crack growth kinetics

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Analysis of hydrogen-stress field interactions have led to kinetic criteria for slow crack growth. Using both elastic and plastic stress fields under opening-mode loading, criteria for stage I, II, III growth are developed in terms of the pressure tensor gradient at the crack tip. It is proposed that stage I (stress-intensity dependent) growth kinetics are predominantly controlled by the elastic stress field while stage II (nearly stress-intensity independent) kinetics are controlled by the plastic stress field. Measurements of slow crack growth in cathodically-charged AISI 4340 steel verify the overall aspects of the correlation. Detailed measurement and analysis of the increase in crack-tip radius with increasing applied stress intensity have led to a proposed decrease in crack growth rate during stage II growth. Some experimental evidence corroborates this later hypothesis and is consistent with long range diffusional flow of hydrogen as the controlling mechanism for crack growth kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. R. Troiano:Trans. ASM, 1960, vol. 52, p. 54.

    Google Scholar 

  2. R. A. Oriani:Fundamental Aspects of Stress Corrosion Cracking, p. 32, Nat. Assoc. of Corros. Engrs., Houston, 1969.

    Google Scholar 

  3. C. St. John and W. W. Gerberich:Met. Trans., 1973, vol. 4, p. 589

    Article  Google Scholar 

  4. W. W. Gerberich and Y. T. Chen:Met. Trans., 1975, vol. 6A, p. 271.

    CAS  Google Scholar 

  5. B. C. Syrett:Corrosion, 1973, vol. 29, no. 1, p. 23.

    CAS  Google Scholar 

  6. H. P. Van Leeuwen:ibid., no. 5, p. 197.

    Google Scholar 

  7. H. W. Liu:J. Basic Eng., ASME, 1970, vol. 92, p. 633.

    CAS  Google Scholar 

  8. R. P. Harrison, P. T. Heald, and J. A. Williams:Scripta Met., 1971,vol. 5,p. 543.

    Article  Google Scholar 

  9. W. W. Gerberich:Hydrogen in Metals, p. 115, ASM, Metals Park, 1974.

    Google Scholar 

  10. A. J. Stavros and H. W. Paxton:Met. Trans., 1970, vol. 1, p. 3049.

    CAS  Google Scholar 

  11. W. G. Reuter and C. E. Hartbower:Eng. Fract. Mech, 1971, vol. 3, p. 493.

    Article  CAS  Google Scholar 

  12. P. C. Paris and G. C. Sih:Amer. Soc. Test. Mater. Special Tech. Publ. 381, 1965, p. 30.

  13. A. J. Wang:Quart. Appl. Mech., 1954, vol. 11, p. 427.

    MATH  Google Scholar 

  14. C. D. Beachem:Met. Trans., 1972, vol. 3, p. 437.

    Article  CAS  Google Scholar 

  15. W. W. Gerberich and C. E. Hartbower:Fundamental Aspects of Stress Corrosion Cracking, p. 420, Nat. Assoc. of Corros. Engrs., Houston, 1969.

    Google Scholar 

  16. A. S. Tetelman and A. J. McEvily, Jr.:Fracture of Structural Materials, John Wiley and Sons, New York, 1967.

    Google Scholar 

  17. F. R. Coe and J. Moreton:Met. Sci. J., 1969, vol. 3, p. 209.

    Article  CAS  Google Scholar 

  18. G. M. Evans and E.C.Rollason:J.Iron and Steel Inst., 1969, December, p. 1491.

  19. A. J. Kumnick and H. H. Johnson:Met. Trans., 1974, vol. 5, p. 1199.

    Article  CAS  Google Scholar 

  20. S. Mostovoy, H. R. Smith, R. G. Lingwall, and E. J. Ripling:Eng. Fract. Mech., 1971, vol. 3, p. 291.

    Article  CAS  Google Scholar 

  21. H. L. Dunegan and A. S. Tetelman:Eng. Fract. Meck, 1971, vol. 2, p. 387.

    Article  Google Scholar 

  22. C. S. Carter:Corrosion, 1969, vol. 25, no. 10, p. 423.

    CAS  Google Scholar 

  23. C. S. Carter:Corrosion, 1971, vol. 27, no. 11, p. 471.

    CAS  Google Scholar 

  24. V. J. Colangelo and M. S. Ferguson:Corrosion, 1969, vol. 25, no. 12, p. 509.

    CAS  Google Scholar 

  25. C. S. Carter:Eng. Fract. Mech., 1971, vol. 3, p. 1.

    Article  Google Scholar 

  26. G. E. Kerns and R. W. Staehle:Scripta Met, 1972, vol. 6, p. 631.

    Article  CAS  Google Scholar 

  27. W. D. Benjamin and E. A. Steigerwald: Air Force Materials Laboratory Report TR-68-80, 1968.

  28. C. S. Kortovich and E. A. Steigerwald:Eng. Fract. Mech., 1972, vol. 4, p. 637.

    Article  CAS  Google Scholar 

  29. J. M. Krafft and H. L. Smith: NRL Memo Report 2598, Naval Research Laboratory, Washington, April 1973.

    Google Scholar 

  30. W. A. Van Der Sluys:Eng. Fract. Mech., 1968, vol. 1, p. 447.

    Google Scholar 

  31. A. M. Sullivan:Eng. Fract. Mech., 1972, vol. 4, p. 65.

    Article  Google Scholar 

  32. J. R. Rice and M. A. Johnson: inInelastic Behavior of Solids, M. F. Kanninen,et al, ed, McGraw-Hill, New York, 1970, p. 641.

    Google Scholar 

  33. J. R. Rice and D. M. Tracy: inNumerical and Computer Methods in Structural Mechanics, S. J. Fenves,et al., ed., Academic Press, New York, 1973, p. 585.

    Google Scholar 

  34. R. A. Oriani:Bunsen-Gesellshaft Phys. Chem., 1972, vol. 76, p. 848.

    CAS  Google Scholar 

  35. R. A. Oriani:Acta Met., 1974, vol. 22, p. 1065.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partial fulfillment of the M.S. Degree at the University of Minnesota

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerberich, W.W., Chen, Y.T. & John, C.S. A short-time diffusion correlation for hydrogen-induced crack growth kinetics. Metall Trans A 6, 1485 (1975). https://doi.org/10.1007/BF02641960

Download citation

  • Received:

  • DOI: https://doi.org/10.1007/BF02641960

Keywords

Navigation