Skip to main content
Log in

The creep fracture of wrought nickel-base alloys by a fracture mechanics approach

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Creep fracture in the 500 to 750°C temperature range was by an intergranular crack growth process involving the formation of microcracks in grain boundaries slightly ahead of the main crack. The crack growth was proportional to an exponential power of the stress intensity. Wide differences in cracking behavior were seen between different alloys, but their differences were due primarily to material processing history and not to compositionper se. Transverse sample orientation and coarser grain sizes significantly improved the resistance to cracking. Both slow crack growth and the final fast fracture toughness changed appreciably with test history. A good correlation was found between the notch properties and the creep behavior of an unnotched sample loaded to the yield strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Wells and F. H. McBride:Can. Met. Quart., 1967, vol. 6, pp. 347–68.

    Google Scholar 

  2. M. J. Siverns and A, T. Price:Nature, 1970, vol. 228, pp. 760–61.

    Article  CAS  PubMed  ADS  Google Scholar 

  3. D. McKeown:Weld. J. Res. Supp., 1971, vol. 50, pp. 201–3s to 206-s.

    Google Scholar 

  4. G. G. Saunders:Weld. Res. Int., 1972, vol. 2, pp. 66–83.

    CAS  Google Scholar 

  5. L. A. James:Int. J. Fract. Mech., 1972, vol. 8, pp. 347–49.

    Article  Google Scholar 

  6. C. B. Harrison and G. N. Sandor:Eng. Fract. Mech., 1971, vol. 3, pp. 403–20.

    Article  CAS  Google Scholar 

  7. J. L. Kenyon, G. A. Webster, J. C. Radon, and C. E. Turner:Inst. of Mech. Eng. Conf. Pub. 13, pp. 156.1–156.8, 1973.

    Google Scholar 

  8. J. R. Haigh and C. E. Richards:ibid., pp. 159.1–159.8.

    Google Scholar 

  9. A. J. McEvily and C. H. Wells:ibid., pp. 230.1–230.7.

    Google Scholar 

  10. G. J. Neate and M. J. Sivern:ibid., pp. 234.1–234.9.

    Google Scholar 

  11. M. J. Sivern and A. T. Price:Int. J. Fract. Mech., 1973, vol. 9, pp. 199–207.

    Article  Google Scholar 

  12. 1972Annual Book of ASTM Standards, Part 31, ASTM, Philadelphia, 1972.

  13. D. M. Gilbey and S. Pearson: Royal Aircraft Establishment Technical Report No. 66402, Dec. 1966.

  14. H. H. Johnson:Mater. Res. Stand., 1965, vol. 5, pp. 442–45.

    Google Scholar 

  15. A.J. Perry:J. Mater. Sci., 1974, vol. 9, pp. 1016–39.

    Article  CAS  ADS  Google Scholar 

  16. F. Garofalo:Fundamentals of Creep and Creep Rupture in Metals, The Macmillan Co., N.Y., 1965.

    Google Scholar 

  17. C. T. Sims:J. Metals, 1966, vol. 18, pp. 1119–30.

    CAS  MathSciNet  Google Scholar 

  18. D. J. Wilson:J. Eng. Mat. Tech., 1973, vol. 95, pp. 112–23.

    CAS  Google Scholar 

  19. J. M. Larson and S. Floreen: International Nickel Co., Sterling Forest, Suffern, N.Y., unpublished results.

  20. D. McLean:J. Inst. Metals, 1956–57, vol. 85, pp. 468–72.

    Google Scholar 

  21. J. Heslop:J. Inst. Metals, 1962–63, vol. 91, pp. 28–33.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Floreen, S. The creep fracture of wrought nickel-base alloys by a fracture mechanics approach. Metall Trans A 6, 1741–1749 (1975). https://doi.org/10.1007/BF02642302

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02642302

Keywords

Navigation