Skip to main content
Log in

The bain strain, lattice correspondences, and deformations related to martensitic transformations

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

The contribution of E. C. Bain in identifying the correspondence and pure strain involved in ferrous martensitic transformations is reviewed, together with later work which has confirmed Bain’s hypothesis. Modern crystallographic theories of martensitic transformations have their origin in Bain’s recognition that a pure strain by itself would produce a major accommodation problem between the parent and product phases; thus, additional lattice invariant processes have been introduced. Some aspects of the crystallographic theories are considered and attention is drawn to the increased number of factorizations of a total strain that become possible when sequences of three (or more) strains are considered instead of the usual two. Some implications of the recent double shear theory (and double interface mechanism) and plastic accommodation model are examined. The nucleation of martensitic transformations with respect to the Bain strain is considered briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. C. Bain:Trans. AIME, 1924, vol. 70, p. 25.

    Google Scholar 

  2. E. C. Bain: private communication.

  3. W. M. Lomer:Inst. Metals Monogr. No. 18, London, 1955, p. 243.

  4. S. Bowles and J.K. Mackenzie:Acta Met., 1954, vol. 2, pp. 129, 138,224.

    Article  CAS  Google Scholar 

  5. T. Tactaki and K. Shimizu:Trans. Japanlmt. Metals, 1970, vol. ll,p.44.

    Google Scholar 

  6. J. W. Matthews and W. A. Jesset:Phil. Mag., 1969, vol. 20, p. 999.

    CAS  Google Scholar 

  7. G. H. Olsen and W. A. Jesser.Acta Met., 1971,vol. 19, p. 1299.

    Article  CAS  Google Scholar 

  8. W. Pitsch:Phil. Mag., 1959, vol. 4, p. 577.

    Google Scholar 

  9. C. M. Wayman:Adv. Mater. Res., 1968, vol. 3, p. 147, ed. H. Herman, John Wiley and Sons Inc., New York.

    Google Scholar 

  10. M. A. JaswonandJ. A. Wheeler.ActaCryst., 1948, vol. 1, p. 216.

    CAS  Google Scholar 

  11. M. W. Burkhart and T. A. Read:Trans. AIME, 1953, vol. 197, p. 1516.

    Google Scholar 

  12. J. W. Christian:Iron Steel Inst., London, 1965, Spec. Rep. 93, p. 1.

  13. J. W. Christian:Inst. Metals Monogr. No. 33, London, 1969, p. 129.

  14. D. S. Lieberman, M. S. Wechsler, and T. A. Read:J. Appl. Phys., 1955, vol. 26, p. 473.

    Article  CAS  Google Scholar 

  15. A. Ölander:Z. Kristal, 1932, vol. 83, p. 145.

    Google Scholar 

  16. E. O. Hall:Twinning and Diffusionless Transformations inMetals, Butterworths, London,1954.

    Google Scholar 

  17. C. M. Wayman:Introduction to the Crystallography of Martensitic Transformations, The Macmillan Company, New York, 1964.

    Google Scholar 

  18. M. S. Wechsler, D. S. Lieberman, and T. A. Read:Trans. AIME, 1953, vol. 197, p. 1503.

    Google Scholar 

  19. N. H. D. Ross and A. G. Crocker:Scripta Met, 1969, vol. 3, p. 37.

    Article  CAS  Google Scholar 

  20. Z. Nishiyama, M. Oka, and H. Nakagawa:Trans. Japan Inst. Metals, 1966, vol. 7, p. 174.

    CAS  Google Scholar 

  21. D. P. Dunne and C. M. Wayman:Acta Met., 1971, vol. 19, p. 425.

    Article  CAS  Google Scholar 

  22. P. Krauklis and J. S. Bowles:Acta Met, 1969, vol. 17, p. 997.

    Article  CAS  Google Scholar 

  23. N. F. Kennon and J. S. Bowles:Acta Met., 1969, vol. 17, p. 373.

    Article  CAS  Google Scholar 

  24. K. Shimizu, M. Oka and C. M. Wayman:ActaMet., 1971, vol. 19, p. 1.

    CAS  Google Scholar 

  25. S. Jana and C. M. Wayman:Met. Trans., 1970, vol. 1, p. 2825.

    CAS  Google Scholar 

  26. A. F. Acton and M. Bevis:Mater. Sci. Eng., 1969–70, vol. 5, p. 19.

    Article  CAS  Google Scholar 

  27. N. H. D. Ross and A. G. Crocker:Acta Met., 1970, vol. 18, p. 405.

    Article  CAS  Google Scholar 

  28. J. S. Bowles and D. P. Dunne:ActaMet., 1969, vol. 17, p. 677.

    CAS  Google Scholar 

  29. R. Bullough and B. A. Bilby:Proc. Phys. Soc. B, 1956, vol. LX1X, p. 1276.

    Article  Google Scholar 

  30. G. V. Kurdjumov and G. Sachs:Z. Phys., 1930, vol. 64, p. 325.

    Article  Google Scholar 

  31. C. M. Zener:Elasticity and Anelasticity of Metals, University of Chicago Press, 1948.

  32. P. M. Kelly and J. Nutting:J. Iron Steel Inst., 1961, vol. 197, p. 199.

    Google Scholar 

  33. See for example the general discussion on Martensite Nucleation by C. L. Magee in:Phase Transformations, American Society for Metals, Cleveland, 1970.

    Google Scholar 

  34. K. Shimizu, M.Oka, and CM. Wayman:Acta Met., 1970, vol. 18, p. 1005.

    Article  Google Scholar 

  35. A. R. Entwisle: inDiscussion at AIME Symp. on Ferrous Martensite, Las Vegas, 1970.

  36. L. Kaufman and M. Cohen:Progr. Metal Phys., 1958, vol. 7, p. 165, Pergamon Press.

  37. M. J. P. Musgrave:Crystal Acoustics, Holden-Day Inc., San Francisco, 1970.

    Google Scholar 

  38. P. Clapp: Research Report, Ledgemont Laboratory, Kennecott Copper Co., Cambridge, Mass., 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowles, J.S., Wayman, C.M. The bain strain, lattice correspondences, and deformations related to martensitic transformations. Metall Trans 3, 1113–1121 (1972). https://doi.org/10.1007/BF02642442

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02642442

Keywords

Navigation