Skip to main content
Log in

Creep resistance and high-temperature metallurgical stability of titanium alloys containing gallium

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

Tensile properties up to 1100°F and the creep resistance at 1000°F were correlated with composition for twelve complex developmental titanium alloys with additions of Al, Ga, Sn, Mo, Zr, and Si. Creep resistance for these alloys in the β heat-treated condition was found to be strongly dependent on the totalα stabilizer content and the silicon concentration. The creep activation energy for a Ti-4.5 Al-2 Sn-3 Zr-3 Ga-1 Mo-0.5 Si alloy, established over the 900° to 1100°F temperature range, was about 100 kcal per g-mole. This high creep activation energy is hypothesized to result from dispersion strengthening within theα matrix by the Ti3 X (X = Al, Ga, Sn) phase and pinning of the interplatelet and priorβ grain boundaries by the Zr5Si3 phase. Both phases were identified by transmission electron microscopy in these respective locations. Metallurgical instability, as evidenced by decreased fracture toughness, is also shown to be relatable to the totalα stabilizer content. The activation energy for the embrittlement process is about 45 kcal per g-mole. which approximates that for interdiffusion of gallium inα titanium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. A. Crossley and W. F. Carew:AIME Trans., 1957, vol. 209, pp. 43–46.

    Google Scholar 

  2. P. J. Soltis:Trans. TMS-AIME, 1965, vol. 233, pp. 903–10.

    CAS  Google Scholar 

  3. C. E. Shamblen:Met. Trans., 1971, vol. 2, pp. 277–80.

    Google Scholar 

  4. E. Ence and H. Margolin:Trans. TMS-AIME, 1961, vol. 221, pp. 151–57.

    CAS  Google Scholar 

  5. D. Clark, K. Jepson, and G. Lewis:J. Inst. Metals, 1965, vol. 91, pp. 197–203.

    Google Scholar 

  6. F. A. Crossley:Tram. TMS-AIME, 1966, vol. 236, pp. 1174–85.

    CAS  Google Scholar 

  7. M. J. Blackburn:Tram. TMS-AIME, 1967, vol. 236, pp. 1200–08.

    Google Scholar 

  8. R. P. Euiot:Constitution of Binary Alloys, First Supplement, p. 459 and p. 829, McGraw-Hill Book Co., New York, 1965.

    Google Scholar 

  9. H. W. Rosenberg:The Science, Technology and Application of Titanium, 1st ed., R. I. Jaffee and N. E. Promisel, eds., pp. 851–60, Pergamon Press, Oxford, 1970.

    Google Scholar 

  10. K. S. Jepson, L. Larke and C. A. Stubbington:The Science, Technology and Application of Titanium, 1st ed., R. I. Jaffee and N. E. Promisel, eds., pp. 861–74, Pergamon Press, Oxford, 1970.

    Google Scholar 

  11. C. E. Samblen and C.J. Rosa:Met. Trans., 1971, vol. 2, pp. 1925–31.

    Google Scholar 

  12. S. R. Seagle and H. B. Bomberger:TheScience, Technology and Application of Titanium, 1st ed., R. I. Jaffee and N. E. Promisel, eds., pp. 1001–08, Pergamon Press, Oxford, 1970.

    Google Scholar 

  13. F. R. Larson and J. Miller:Tram. ASME, 1952, vol. 74, pp. 765–71.

    Google Scholar 

  14. C. Wert and C. Zener:J. Appl. Phys., 1950, vol. 21, pp. 5–8.

    Article  CAS  Google Scholar 

  15. R. L. Orr, O. D. Sherby, and J. E. Dorn:Trans. ASM, 1954, vol. 46, pp. 113–28;

    CAS  Google Scholar 

  16. D. Goold:J. Inst. Metals, 1959, vol. 88, pp. 444–48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shamblen, C.E., Redden, T.K. Creep resistance and high-temperature metallurgical stability of titanium alloys containing gallium. Metall Trans 3, 1299–1305 (1972). https://doi.org/10.1007/BF02642464

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02642464

Keywords

Navigation