Skip to main content
Log in

Natural convection transients and their effects in unidirectional solidification

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

A formulation is given and computed solutions are presented for transient solidification accompanied by natural convection in a vertical slot. It was found that appreciable fluid velocities may be produced by natural convection, the values of which could be comparable to the terminal rising velocities of typical nonmetallic inclusions. The simplifying assumptions made limit the validity of the solutions to systems where GrPr < 500,i.e., to narrow slots or to low values of the superheat; nonetheless, the results should be indicative of the effects of convection at much higher values of GrPr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Cp :

specific heat

g:

acceleration due to gravity

Gr:

Grashoff number

k:

thermal conductivity

L, Ĺ:

dimensionless and dimensional path travelled, respectively

Pr:

Prandtl number

q:

latent heat

Q:

dimensionless group

u, ú:

dimensionless and dimensional vertical velocity components, respectively

ú:

dimensional horizontal velocity component

y,’ y:

dimensionless and dimensional coordinates, respectively

Y:

half width of the liquid core

Yo :

half width of the slot

β:

coefficient of thermal expansion

v:

kinematic viscosity

p:

density

av:

average

m:

melting point

f:

flotation

s:

solid

i:

initial

t:

total

I:

liquid

w:

wall

References

  1. W. A. Tiller:Trans. TMS-AIME, 1962, vol. 224, p. 448.

    CAS  Google Scholar 

  2. B. Chalmers:Principles of Solidification, John Wiley & Sons, New York, 1964.

    Google Scholar 

  3. R. W. Ruddle and A. L. Mincher:J. Inst. Metals, 1950–51, vol. 78, p. 229.

    CAS  Google Scholar 

  4. G. S. Cole and G. F. Boiling:Trans. TMS-AIME, 1965, vol. 233, p. 1568.

    CAS  Google Scholar 

  5. N. Standish:Trans. TMS-AIME, 1968, vol. 242, p. 1475.

    Google Scholar 

  6. D. R. Uhlmann, T. P. Seward, III, and B. Chalmers:Trans. TMS-AIME, 1966, vol. 236, p. 527.

    CAS  Google Scholar 

  7. H. P. Utech and M. C. Flemings:J. Appl. Phys., 1966, vol. 37, p. 29.

    Article  Google Scholar 

  8. G. S. Cole and W. C. Winegard:J. Inst. Metals, 1964–65, vol. 93, p. 153.

    CAS  Google Scholar 

  9. G. S. Cole and W. C. Winegard:Can. Met. Quart., 1962, vol. l,p. 13.

    Google Scholar 

  10. G. S. Cole:Trans. TMS-AIME, 1967, vol. 239, p. 1284.

    Google Scholar 

  11. J. Szekely and P. S. Chhabra:.Met. Trans., 1970,vol. 1, p. 1195.

    Google Scholar 

  12. W. M. Rohsenow and H. Choi:Heat Mass and Momentum Transfer, pp. 142ff, Prentice Hall, Englewood Cliffs, N. J., 1961.

    Google Scholar 

  13. H. Schlichtung:Boundary Layer Theory, pp. 300ff, McGraw Hill Book Co., New York, 1969.

    Google Scholar 

  14. H. S. Carslaw and J. C. Jager:Conduction of Heat in Solids, Chapt. 11, Oxford University Press, 1959.

  15. M. R. Todd: Ph.D. Thesis, State University of New York at Buffalo, 1969.

  16. J. F. Elliott and M. Gleiser:Thermochemistry for Steelmaking, Vol. 1, Addison Wesley, 1960.

  17. J. M. Coulson and J. F. Richardson:Chemical Engineering, Vol. 2, Pergamon Press, London, 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Post-Doctoral Research Associate, State University of New York at Buffalo

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szekely, J., Stanek, V. Natural convection transients and their effects in unidirectional solidification. Metall Trans 1, 2243–2251 (1970). https://doi.org/10.1007/BF02643441

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02643441

Keywords

Navigation