Skip to main content
Log in

Hydrogen assisted fracture of spheroidized plain carbon steels

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The role of hydrogen in the ductile fracture of spheroidized low carbon steels was studied. In addition, the relevant literature has been reviewed to develop a certain perspective on the problem. Both initially smooth and circumferentially notched tensile specimens were electrochemically charged with hydrogen at various cathodic current densities and then uniaxially strained various amounts. Comparisons with uncharged specimens showed that hydrogen promotes void initiation at cementite particles. Void growth and coalescence were also accelerated by hydrogen. Since a large proportion of void coalescence as well as the latter stages of void growth take place along grain, and possibly subgrain boundaries, hydrogen induced losses in interfacial cohesion may account for void initiation, growth and coalescence at lower stresses and strains. A partial transition in fracture mode was observed in steels with a low particle-matrix and grain boundary interfacial area per unit specimen volume. This quasicleavage mode was generally found to be associated with nonmetallic inclusions, suggesting that they act as hydrogen sinks during the charging process and then, during deformation, release a sufficiently large amount of hydrogen to cause quasicleavage fracture to occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Rice:Effect of Hydrogen on Behavior of Materials, A. W. Thompson and I. M. Bernstein, eds., chapt. 7, p. 455, TMS-AIME, New York, NY 1976.

    Google Scholar 

  2. K. Yoshino and C. J. McMahon, Jr.:Metall. Trans., 1974, vol. 5, p. 363.

    Article  Google Scholar 

  3. D. P. Smith:Hydrogen in Metals, chapt. 9, p. 145, Univ. Chicago Press, Chicago, IL, 1948.

    Google Scholar 

  4. S. W. Thompson and I. M. Bernstein:Proc. Fourth Int. Conf. on Fracture, Waterloo, Canada, D. M. R. Taplin, ed., vol. 2, chapt. 1, p. 249, Univ. Waterloo Press, Waterloo, Canada, 1977.

    Google Scholar 

  5. C. A. Zappfe and C. E. Sims:Trans. AIME (Iron and Steel Division), 1941, vol. 145, p. 225.

    Google Scholar 

  6. J. D. Seabrook, N. J. Grant, and D. Carney:J. Met., 1950, vol. 188, p. 1317.

    Google Scholar 

  7. J. D. Seabrook, N. J. Grant and D. Carney:J. Met., 1951, vol 189, p. 558.

    Google Scholar 

  8. P. Bastien and P. Azou:Proc. First World Metall. Cong., p. 535, ASM, Metals Park, OH, 1951.

    Google Scholar 

  9. N. J. Petch and P. Stables:Nature, 1952, vol. 169, p. 842.

    Article  Google Scholar 

  10. N. J. Petch:Philos. Mag., 1956, vol. 1 (8th series), p. 331.

    Article  Google Scholar 

  11. A. Cracknell and N. J. Petch:Acta Metall., 1955, vol. 3, p. 200.

    Article  Google Scholar 

  12. H. C. Rogers:Acta Metall., 1956, vol. 4, p. 114.

    Article  Google Scholar 

  13. L. C. Weiner and M. Gensamer:Acta Metall., 1957, vol. 5, p. 692.

    Article  Google Scholar 

  14. M. L. Hill and E. W. Johnson:Trans. TMS-AIME, 1959, vol. 215, p. 717.

    Google Scholar 

  15. F. deKazinczy:Acta Metall. 1959, vol. 7, p. 706.

    Article  Google Scholar 

  16. K. Farrell:J. Iron Steel Inst., 1965, vol. 203, p. 71.

    Google Scholar 

  17. K. Farrell:J. Iron Steel Inst., 1965, vol. 203, p. 457.

    Google Scholar 

  18. T. D. Lee, T. Goldenberg, and J. P. Hirth:Proc. Fourth Int. Conf. on Fracture, Waterloo, Canada, D. M. R. Taplin, ed., vol. 2, chapt. 1, p. 243, Univ. Waterloo Press, Ontario, Canada, 1977.

    Google Scholar 

  19. R. Gibala:Trans. TMS-AIME, 1967, vol. 239, p. 1574.

    Google Scholar 

  20. K. Takita, M. Niikura, and K. Sakamoto:Scr. Metall., 1973, vol. 7, p. 989.

    Article  Google Scholar 

  21. K. Takita and K. Sakomoto:Scr. Metall., 1976, vol. 10, p. 399.

    Article  Google Scholar 

  22. I. M. Bernstein:Metall. Trans., 1970, vol. 1, p. 3143.

    Google Scholar 

  23. M. R. Louthan Jr., G. R. Caskey Jr., J. A. Donovan, and D. E. Rawl Jr.:Mater. Sci. Eng., 1972, vol. 10, p. 357.

    Article  Google Scholar 

  24. A. M. Murray and K. D. Timmerhaus:Adv. Cryog. Eng., 1977, vol. 22, p. 182.

    Google Scholar 

  25. A. W. Thompson:Effect of Hydrogen on Behavior of Materials, A. W. Thompson and I. M. Bernstein, eds., chapt. 4, p. 467, TMS-AIME, New York, NY, 1976.

    Google Scholar 

  26. A. W. Thompson:Mater. Sci. Eng., 1974, vol. 14, p. 253.

    Article  Google Scholar 

  27. R. Garber, I. M. Bernstein, and A. W. Thompson:Scr. Metall., 1976, vol. 10, p. 341.

    Article  Google Scholar 

  28. R. Garber, I. M. Bernstein and A. W. Thompson: unpublished research.

  29. T. Goldenberg, T. D. Lee, and J. P. Hirth:Metall. Trans. A, 1979, vol. 10A, p. 199.

    Google Scholar 

  30. H. Cialone and R. J. Asaro:Metall. Trans. A, 1979, vol. 10A, p. 367.

    Article  Google Scholar 

  31. J. R. Rice and D. M. Tracey:J. Mech. Phys. Solids, 1969, vol. 17, p. 201.

    Article  Google Scholar 

  32. J. E. French, P. F. Weinrich, and C. W. Weaver:Scr. Metall., 1979, vol. 13, p. 285.

    Article  Google Scholar 

  33. K. E. Puttick:Philos. Mag., 1959, vol. 4, p. 964.

    Article  Google Scholar 

  34. A. R. Rosenfield:Met. Rev., 1968, vol. 13, p. 29.

    Article  Google Scholar 

  35. H. C. Rogers:Trans. TMS-AIME, 1960, vol. 218, p. 498.

    Google Scholar 

  36. H. C. Rogers:Ducitility, chapt. 2, p. 31, ASM, Metals Park, OH, 1968.

    Google Scholar 

  37. J. I. Bluhm and R. J. Morrissey:Proc. First Int. Cong, on Fracture, vol. 3, p. 1739, Japan Soc. Strength and Fracture, Sendai, Japan, 1966.

    Google Scholar 

  38. L. Anand and J. Gurland:Acta Metall, 1976, vol. 24, p. 901.

    Article  Google Scholar 

  39. A. S. Argon, J. Im, and A. Needleman:Metall. Trans. A, 1975, vol. 6A, p. 815.

    Article  Google Scholar 

  40. W. M. Robertson and A. W. Thompson:Metall. Trans. A, 1980, vol. 11 A, p. 553.

    Article  Google Scholar 

  41. M. Bessendorf: M.S. Thesis, Brown University, 1980.

  42. J. Fisher: Ph.D. Thesis, Brown University, 1980.

  43. E. E. Underwood:Quantitative Stereology, Addison-Wesley, Reading, MA, 1970.

    Google Scholar 

  44. J. Fisher: personal communication, 1980.

  45. R. Garber: personal communication, 1979.

  46. G. Vibrans:Metall. Trans. A, 1977, vol. 8A, p. 1318.

    Article  Google Scholar 

  47. A. W. Thompson and J. C. Chestnut:Metall. Trans. A, 1979, vol. 10A, p. 1193.

    Article  Google Scholar 

  48. C. D. Beachem and R. M. N. Pelloux: ASTM STP 381, p. 210, Philadelphia, PA, 1965.

  49. A. W. Thompson: personal communication, Carnegie-Mellon University, Pittsburgh, PA, 1980.

  50. H. Cialone: M.S. Thesis, Brown University, 1978.

  51. R. Thomson:J. Mater. Sci., 1978, vol. 13, p. 128.

    Article  Google Scholar 

  52. J. R. Rice and R. Thomson:Philos. Mag., 1974, vol. 29, p. 73.

    Article  Google Scholar 

  53. J. K. Tien:Effect of Hydrogen and Behavior of Materials, I. M. Bernstein and A. W. Thompson, eds., chapt. 5, p. 309, TMS-AIME, New York, NY 1976.

    Google Scholar 

  54. H. H. Johnson, J. G. Morlett, and A. R. Troiano:Trans. TMS-AIME, 1958, vol. 212, p. 528.

    Google Scholar 

  55. B. R. Butcher and P. L. Allen:Met. Sci., 1977, vol. 11, p. 462.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

H. CIALONE, formerly with Brown University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cialone, H., Asaro, R.J. Hydrogen assisted fracture of spheroidized plain carbon steels. Metall Trans A 12, 1373–1387 (1981). https://doi.org/10.1007/BF02643682

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02643682

Keywords

Navigation