Skip to main content
Log in

Oxide-Induced Crack Closure: An Explanation for Near-Threshold Corrosion Fatigue Crack Growth Behavior

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The concept of oxide-induced crack closure is utilized to explain the role of gaseous and aqueous environments on corrosion fatigue crack propagationat ultralow, near-threshold growth rates in bainitic and martensitic 2 1/4 Cr-1 Mo pressure vessel steels. It is shown that at low load ratios, near-threshold growth rates are significantly reduced in moist environments (such as air or water), compared to dry environments (such as hydrogen or helium gas), due to the formation of excess corrosion deposits on crack faces which enhances crack closure. Using Auger spectroscopy, it is found that at the threshold stress intensity, ΔKo, below which cracks appear dormant, the maximum thickness of excess oxide debris within the crack is comparable with the pulsating crack tip opening displacement. The implications of this model to near-threshold fatigue crack growth behavior, in terms of the role of load ratio, environment, and microstructure are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For example, seeProceedings of Intl. Conf. on Corrosion Fatigue,Chemistry, Mechanics, Microstructure, Storrs, Connecticut, Nat. Assoc. Corrosion Engineers, 1971.

  2. R. O. Ritchie, S. Suresh, and C. M. Moss:J. Eng. Mater. Technol., Trans. ASME Series H, 1980, vol. 102, p. 293.

    Article  Google Scholar 

  3. A. T. Stewart:Eng. Fract. Mech., 1980, vol. 13, p, 463.

    Article  Google Scholar 

  4. R. O. Ritchie:Analytical and Experimental Fracture Mechanics, G. C. Sih, and M. Mirabile, eds., Sijthoff and Noordhoff, 1981.

  5. S. Suresh.G. F. Zamiski, and R. O. Ritchie:The Application of 2% Cr-l Mo Pressure Vessel Steel for Thick-Wall Pressure Vessels, ASTM STP 755, 1981.

  6. J. Toplosky: S. M. Thesis, Dept. of Mech. Eng., M.I.T., 1981.

    Google Scholar 

  7. R. J. Cooke and C. J. Beevers:Mater. Sci. Eng., 1974, vol. 13, p. 201.

    Article  Google Scholar 

  8. R. O. Ritchie:Int. Metall. Rev., 1979, vol. 20, p. 205.

    Google Scholar 

  9. D. Benoit, R. Namdar-Tixier, and R. Tixier:Mater. Sci. Eng., 1981, vol. 45, p. 1.

    Article  Google Scholar 

  10. W. Elber: ASTM STP 486, p. 280, 1971.

  11. R. P. Gangloff and R. P. Wei:Metall. Trans. A., 1977, vol. 8A, p. 1043.

    Article  Google Scholar 

  12. G. F. Zamiski: S. M. Thesis, Dept. of Mech. Eng., M.I.T., July 1980.

    Google Scholar 

  13. R. O. Ritchie:Crack Growth Monitoring: Some Considerations on the Electrical Potential Method, Dept. of Metallurgy and Materials Science Technical Report, Cambridge University, Jan. 1972.

  14. R. O. Ritchie:J. Eng. Mater. Technol., Trans. ASME Series H, 1977, vol. 99, p. 195.

    Article  Google Scholar 

  15. S. Suresh, C. M. Moss, and R. O. Ritchie:Trans. Jpn. Inst. Met., 1980, vol. 21, p. 481.

    Google Scholar 

  16. R. O. Ritchie and R. Fuquen-Molano: M.I.T. Fatigue and Plasticity Laboratory Report No. FPL/R/80/1035, Oct. 1980.

  17. R. L. Brazill, G. W. Simmons, and R. P. Wei:J. Eng. Mater. Technol., Trans. ASME, Series H, 1979, vol. 101, p. 199.

    Article  Google Scholar 

  18. J. W. Swanson and H. L. Marcus:Metall. Trans. A., 1978, vol. 9A, p. 291.

    Article  Google Scholar 

  19. L.K.L. Tu and B. B. Seth:J. Test Eval., 1978, vol. 6, p. 66.

    Article  Google Scholar 

  20. G. E. Nordmark and W. G. Fricke:ibid., p. 301.

    Article  Google Scholar 

  21. R. P. Skelton and J. R. Haigh:Mater. Sci. Eng., 1978, vol. 36, p. 17.

    Article  Google Scholar 

  22. P. C. Paris, R. J. Bucci, E. T. Wessel, W. G. Clark, and T. R. Mager: ASTM STP 513, 1972, p. 141.

  23. D. L. Davidson:Fat. Eng. Mat. Struct., 1981, vol. 3, p. 229.

    Article  Google Scholar 

  24. I. C. Mayes, and T. J. Baker:Micromechanisms of Crack Extension, Proc. Conf. on Mechanics and Physics of Fracture II, Metals Society/Institute of Physics, 1981, in press.

  25. N. Walker and C. J. Beevers:Fat. Eng. Mat. Struct., 1979, vol. 1, p. 135.

    Article  Google Scholar 

  26. T. C. Lindley and C. E. Richards: Central Electricity Generating Board Note No. RD/L/N 135/78, Aug. 1978, CERL, U.K.

  27. O. Vosikovsky:Eng. Fract. Mech., 1979, vol. 11, p. 959.

    Article  Google Scholar 

  28. R. O. Ritchie:Met. Sci., 1977, vol. 11, p. 368.

    Article  Google Scholar 

  29. J. Masounave and J.-P. Baïlon:Scr. Metall., 1976, vol. 10, p.165.

    Article  Google Scholar 

  30. C. J. Beevers:Mel. Sci., 1977, vol. 11, p. 362.

    Google Scholar 

  31. G. R. Yoder, L. A. Cooley, and T. W. Crooker:J. Eng. Mater. Technol., Trans. ASME, Series H, 1979, vol. 101, p. 86.

    Article  Google Scholar 

  32. W. W. Gerberich and N. R. Moody: ASTM STP 675, 1979, p. 292.

  33. G. J. Petrak and J. P. Gallagher:J. Eng. Mater. Technol., Trans. ASME, Series H, 1975, vol. 97, p. 206.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

formerly with M.I.T., is with McDonnell-Douglas Corporation, Redondo Beach, CA.

formerly with M.I.T., is Associate Professor, Department of Materials Science and Mineral Engineering, and Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suresh, S., Zamiski, G.F. & Ritchie, D.R.O. Oxide-Induced Crack Closure: An Explanation for Near-Threshold Corrosion Fatigue Crack Growth Behavior. Metall Trans A 12, 1435–1443 (1981). https://doi.org/10.1007/BF02643688

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02643688

Keywords

Navigation