Skip to main content
Log in

Hydrogen transport during deformation in nickel: Part I. Polycrystalline nickel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The electrochemical permeation technique was used to study the effects of deformation on the steady state flux of hydrogen in polycrystalline nickel 270. The hydrogen flux change was found to depend strongly on strain rate. At fast strain rates, the hydrogen flux decreased due to dynamic trapping by newly created dislocations. At slow strain rates, new traps were created more slowly with time and the lattice had a chance to be refilled with hydrogen from the charging surface. Lattice refilling masks the trapping effect so that less of a decrease in hydrogen flux was observed. Under the conditions of total lattice refilling, a decrease in specimen thickness and an increase in input concentration resulted in an increase in the permeation flux. No evidence of dislocation transport was observed in polycrystalline nickel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Boniszewski and G.C. Smith:Acta Metall., 1963, vol. 11, pp. 165–78.

    Article  CAS  Google Scholar 

  2. R. M. Latanision and H. Opperhauser, Jr.:Metall. Trans., 1974, vol. 5, pp. 483–92.

    Google Scholar 

  3. T. S. F. Lee: Sc.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1982.

    Google Scholar 

  4. R. H. Jones, S. M. Bruemmer, M. T. Thomas, and D. R. Baer:Metall. Trans. A, 1983, vol. 14A, pp. 1729–36.

    CAS  Google Scholar 

  5. J. Albrecht, I. M. Bernstein, and A. W. Thompson:Metall. Trans. A, 1982, vol. 13A, pp. 811–20.

    Google Scholar 

  6. A. W. Thompson:Hydrogen in Metals, I. M. Bernstein and A. W. Thompson, eds., ASM, Metals Park, OH, 1974, pp. 91–105.

    Google Scholar 

  7. J. K. Tien, A. W. Thompson, I. M. Bernstein, and R. J. Richards:Metall. Trans. A, 1976, vol. 7A, pp. 821–29.

    CAS  Google Scholar 

  8. S.V. Nair, R.R. Jensen, and J.K. Tien:Metall. Trans. A, 1983, vol. 14A, pp. 385–93.

    Google Scholar 

  9. H.H. Johnson and J. P. Hirth:Metall. Trans. A, 1976, vol. 7A, pp. 1543–48.

    CAS  Google Scholar 

  10. J.P. Hirth and H.H. Johnson:Atomistics of Fracture, R.M. Latanision and J.R. Pickens, eds., Plenum Press, New York, NY, 1983, pp. 771–88.

    Google Scholar 

  11. R.M. Latanision and M. Kurkula:Corrosion, 1983, vol. 39, pp. 174–81.

    CAS  Google Scholar 

  12. M.R. Louthan, Jr., G.R. Caskey, Jr, J. A. Donovan, and D. E. Rawl, Jr:Mater. Sci. Eng., 1972, vol. 10, pp. 357–68.

    Article  CAS  Google Scholar 

  13. J. A. Donovan:Metall. Trans. A, 1976, vol. 7A, pp. 145–49.

    CAS  Google Scholar 

  14. G. S. Frankel and R. M. Latanision:Metall. Trans. A, 1986, vol. 17A, pp. 861–67.

    CAS  Google Scholar 

  15. M. A. Devanathan and Z. Stachurski:Proc. Roy. Soc, 1962, vol. A270, pp. 90–102.

    Google Scholar 

  16. M. Kurkela and R.M. Latanision:Scripta Met., 1979, vol. 13, pp. 927–32.

    Article  CAS  Google Scholar 

  17. B.J. Berkowitz and F. H. Heubaum:Atomistics of Fracture, R.M. Latanision and J.R. Pickens, eds., Plenum Press, New York, NY, 1983, pp. 823–28.

    Google Scholar 

  18. T. Murata: Ph.D. Thesis, The Ohio State University, Columbus, OH, 1971.

    Google Scholar 

  19. J. McBreen, L. Nanis, and W. Beck:J. Electrochem. Soc., 1966, vol. 113, pp. 1218–22.

    Article  Google Scholar 

  20. M. Hashimoto: Ph.D. Thesis, M.I.T., Cambridge, MA, 1984.

    Google Scholar 

  21. A. McNabb and P. K. Foster:Trans. AIME, 1963, vol. 227, pp. 618–27.

    CAS  Google Scholar 

  22. G.T. Burstein and M. N. Kearns:J. Electrochem. Soc, 1984, vol. 131, pp. 991–97.

    Article  CAS  Google Scholar 

  23. J.O’M. Bockris and A. K. N. Reddy:Modern Electrochemistry, Plenum Press, New York, NY, 1973, vol. 2, pp. 1231–53.

    Google Scholar 

  24. J. McBreen and M. A. Genshaw:Fundamental Aspects of Stress Corrosion Cracking, R.W. Staehle, ed., NACE, Houston, TX, 1969, pp. 51–63.

    Google Scholar 

  25. M. Kurkela, G.S. Frankel, R.M. Latanision, S. Suresh, and R.O. Ritchie:Scripta Met., 1982, vol. 16, pp. 455–59.

    Article  CAS  Google Scholar 

  26. C. Hwang and I. M. Bernstein:Proc. Third Intl. Cong, on Hydrogen and Materials, Paris, 1982, pp. 515-20.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student, The H.H. Uhlig Corrosion Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frankel, G.S., Latanision, R.M. Hydrogen transport during deformation in nickel: Part I. Polycrystalline nickel. Metall Trans A 17, 861–867 (1986). https://doi.org/10.1007/BF02643862

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02643862

Keywords

Navigation