Skip to main content
Log in

The shape memory effect and pseudoelasticity in polycrystalline Cu-Zn alloys

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The shape memory effect associated with the reverse transformation of deformed martensite, pseudoelastic behavior involved in stress-induced martensite formation and the reversion of strained martensite after an applied stress is relaxed aboveA f have been studied. Grain size and specimen geometry effects have been related to the above phenomena. Although recoverable strains as high as 10.85 pct were observed in coarse-grained (“bamboo” type) specimens, the shape memory effect is restricted in fine-grained specimens because of permanent grain boundary deformation and intergranular fracture which occurs at relatively low strains. A fine grain size also acts to suppress pseudoelastic behavior because permanent, localized deformation is generated concurrent with the formation of stress-induced martensite which inhibits reversion of the latter upon release of stress. The apparent plastic deformation of martensite belowM f can be restored by transforming back to the original parent phase by heating toA f (shape memory) or alternatively, can be recovered belowM f by applying a small stress of opposite sign. Martensite deformed belowM f with the same stress maintained while heating persists aboveA f, but reverts to the parent phase in a pseudoelastic manner when the stress is relieved. The athermal thermoelastic martensite, which forms in groups composed of four martensite plate variants, undergoes several morphology changes under deformation. One of the variants within a plate group cluster may grow with respect to the others, and eventually form a single crystalline martensitic region. At a later stage pink colored deformation bands form in the same area and join up with increasing stress, resulting in thermally irreversible kinks. The clusters of plate groups may expand like grain growth or contract as a whole during deformation, or act as immobile “subgrains” which lead to permanent deformation at their boundaries. Stress-induced martensite usually forms as one variant of parallel plates which join up with increasing stress to form single crystalline regions. Further stress leads to pink colored deformation bands, similar to those in the deformed athermal martensite. Other similarities and differences between the stress-induced and athermal martensite have been investigated and are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Eisenwasser and L. C. Brown:Met. Trans., 1972, vol. 3, p. 1359.

    Article  CAS  Google Scholar 

  2. C. M. Wayman and K. Shimizu:Metal Sci. J., 1972, vol. 6, p. 1975.

    Article  Google Scholar 

  3. L. C. Chang and T. A. Read:Trans. AIME, 1951, vol. 191, p. 47.

    CAS  Google Scholar 

  4. F. E. Wang, J. W. Buehler, and S. J. Pickart:J. Appl. Phys., 1965, vol. 36, p. 3232.

    Article  CAS  Google Scholar 

  5. H. Tas, L. Delaey, and A. Deruyttere:Scr. Met., 1971, vol. 5, p. 1117.

    Article  CAS  Google Scholar 

  6. K. Otsuka and K. Shimizu:Scr. Met., 1970, vol. 4, p. 469.

    Article  CAS  Google Scholar 

  7. C. M. Wayman:Scr. Met., 1971, vol. 5, p. 489.

    Article  CAS  Google Scholar 

  8. D. V. Wield and E. Gillam:Scr. Met., 1972, vol. 6, p. 1157.

    Article  Google Scholar 

  9. Z. S. Basinski and W. J. Christian:Acta Met., 1954, vol. 2, p. 161.

    Article  Google Scholar 

  10. I. Cornelis and C. M. Wayman:Scr. Met., 1974, vol. 8, p. 1321.

    Article  CAS  Google Scholar 

  11. Y. K. Au and C. M. Wayman:Scr. Met., 1972, vol. 6, p. 1209.

    Article  CAS  Google Scholar 

  12. J. W. Christian:The Theory of Transformations in Metals and Alloys, p. 789, Pergamon Press, New York, 1965.

    Google Scholar 

  13. T. Tadaki, M. Tokoro, and K. Shimizu:Trans. Jap. Inst. Metals, 1975, vol. 16, p. 285.

    CAS  Google Scholar 

  14. W. Arnado and M. Ahlers:Scr. Met., 1973, vol. 7, p. 1287.

    Article  Google Scholar 

  15. H. Pops:Met. Trans., 1970, vol. 1, p. 251.

    CAS  Google Scholar 

  16. W. A. Rachinger:J. Aust. Inst. Metals, 1960, vol. 5, p. 114.

    CAS  Google Scholar 

  17. L. Delaey, R. V. Krishnan, H. Tas, and H. Warlimont:J. Mater. Sci., 1914, vol. 9, p. 1536.

    Google Scholar 

  18. I. Cornelis and C. M. Wayman:Acta Met., 1974, vol. 22, p. 291.

    Article  CAS  Google Scholar 

  19. H. Pops and T. B. Massalski:Trans. TMS-AIME, 1964, vol. 230, p. 1662.

    CAS  Google Scholar 

  20. S. Sato and K. Takezawa:Trans. Jap. Inst. Metals, 1968, vol. 9, p. 925.

    CAS  Google Scholar 

  21. R. D. Garwood and D. Hull:Acta Met., 1958, vol. 6, p. 98.

    Article  CAS  Google Scholar 

  22. I. Cornelis and C. M. Wayman:Acta Met., 1974, vol. 22, p. 301.

    Article  CAS  Google Scholar 

  23. I. Cornelis: Ph.D. Thesis, University of Illinois, 1973.

  24. R. E. Hummel and J. W. Koger:Trans. TMS-AIME, 1968, vol. 242, p. 154.

    CAS  Google Scholar 

  25. R. E. Hummel and J. W. Koger:Trans. TMS-AIME, 1968, vol. 242, p. 1754.

    CAS  Google Scholar 

  26. K. A. Thornburg, D. P. Dunne, and C. M. Wayman:Met. Trans., 1971, vol. 2, p. 2302.

    CAS  Google Scholar 

  27. L. Delaey, J. Van Paemel, and T. Struyve:Scr. Met., 1972, vol. 6, p. 507.

    Article  CAS  Google Scholar 

  28. I. Cornelis and C. M. Wayman:Mater. Res. Bull., 1974, vol. 9, p. 1057.

    Article  CAS  Google Scholar 

  29. R. E. Hummel:Z. Metallk., 1968, vol. 59, p. 153.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with the University of Illinois at Urbana-Champaign

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schroeder, T.A., Cornelis, I. & Wayman, C.M. The shape memory effect and pseudoelasticity in polycrystalline Cu-Zn alloys. Metall Trans A 7, 535–553 (1976). https://doi.org/10.1007/BF02643969

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02643969

Keywords

Navigation