Skip to main content
Log in

Effect of hydrogen on fracture and inert-environment sustained load cracking resistance of α- β titanium alloys

  • Published:
Metallurgical transactions Aims and scope Submit manuscript

Abstract

The fracture toughness and resistance to inert-environment sustained load crack propagation of α titanium alloys are usually reduced by increased hydrogen contents. The range of hydrogen contents over which either fracture toughness or threshold stress intensity for sustained load cracking was observed to decrease with hydrogen content is small (0 to 50 ppm) for Ti-6 Al-4 V, but further increases in hydrogen content can cause an increase in cracking rates. Sustained load crack propagation is characterized by a mixture of microvoid coalescence with cleavage, usually on a plane 12 to 15 deg from {0001} of the hep α phase with some {000l} cleavage. Cleavage apparently initiates ahead of the main crack front within a grains, usually near apparent α interfaces. Atmospheric moisture is inert with respect to sustained load cracking, that is, it does not cause stress corrosion cracking. Sustained load cracking was demonstrated in Ti-8 Al-1 Mo-1 V, Ti-6 Al-6 V-2 Sn, and several grades of Ti-6 Al-4 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. N. Williams:Hydrogen in Titanium and Titanium Alloys, TML Report No. 100, May 16,1958, Battelle-Columbus Lab.

  2. P. Cotterill:Prog. Mater. Sci., 1961, vol.9, pp. 241–59.

    Article  Google Scholar 

  3. R. D. Daniels, R. J. Quigg, and A. R. Troiano:Trans. ASM, 1959, vol. 51, pp. 843–61.

    Google Scholar 

  4. D. N. Williams:J. Inst. Metals, 1962-63, vol. 91, pp. 147–52.

    CAS  Google Scholar 

  5. R. I. Jaffee, G. A. Lenning, and C. M. Craighead:Trans. AIME, 1956, vol. 206, pp. 907–13.

    Google Scholar 

  6. H. M. Burte, E. F. Erbin, G. T. Hahn, R. J. Kotfila, J. W. Seeger, and D. A. Wrack:Metals Prog., 1955, pp. 115–20.

  7. R. I. Jaffee, D. N. Williams:Trans. ASM, 1959, vol. 51, pp. 820–42.

    Google Scholar 

  8. G. Sandoz: Proceedings of Conference:Fundamental Aspects of Stress Corrosion Cracking, pp. 684–90, R. W. Staehle, A. J. Forty, and D. Van Rooyen, eds., NACE, Houston, Texas, 1969.

    Google Scholar 

  9. D. A. Meyn:Report of NRL Progress, Nov. 1968, pp. 20–21.

  10. D. A. Meyn:Report of NRL Progress, Sept. 1969, pp. 34–36.

  11. D. A. Mauney: MS Thesis, 1969, Georgia Inst. of Technology.

  12. G. R. Yoder, C. A. Griffis, and T. W. Crooker: NRL Report 7596, U.S. Naval Research Laboratory, Washington, D.C., Aug. 1973. (See also Yoderet al “The Cracking of TI-6A1-4V Alloys Under Sustained Load in Ambient Air”,ASMEJ. Eng. Mater. Tech., Oct. 1974, vol. 96.

    Google Scholar 

  13. H. P. Chu:Eng. Fract. Meek, 1972, vol. 4, pp. 107–17.

    Article  CAS  Google Scholar 

  14. D. N. Williams:Met. Trans., 1973, vol. 4, pp. 675–80.

    Article  CAS  Google Scholar 

  15. I. R. Lane, Jr., J. L. Cavallaro, and A. G. S. Morton:Stress-Corrosion Cracking of Titanium, pp. 246–63, SIP 397 Amer. Soc. Testing Mater., 1966.

  16. A. I. Gorshkov, B. A. Matyushkin, V. N. Meshcheryakov, and M. Kh. Shorshorov:Fizika i Khim. Obrabot. Mat., 1972, vol. 1972, pp. 140–43.

    Google Scholar 

  17. D. A. Meyn: Memorandum Report 2461, U.S. Naval Research Laboratory, Washington, D.C., June 1972.

    Google Scholar 

  18. 1972 Annual Book of ASTM Standards, Part 31, Standard Method E399.

  19. J. A. Kies, H. L. Smith, H. E. Romine, and H. Bernstein:Fracture Toughness Testing, ASTM Special Technical Publication 381, ASTM Philadelphia, Pa., 1965, pp. 328–56.

    Google Scholar 

  20. D. A. Meyn:Met. Trans., 1971, vol. 2, pp. 853–65.

    Article  CAS  Google Scholar 

  21. W. R. Warke, N. A. Nielsen, R. W. Hertzberg, M. S. Hunter, and M. Hill:Electron Fractography, ASTM Special Technical Publication 436,1968, pp. 212–30.

  22. M. J. Blackburn and J. C. Williams: Ref. 8, pp. 620–37.

  23. D. A. Meyn:Met. Trans., 1972, vol. 3, pp. 2302–05.

    Article  Google Scholar 

  24. C. D. Beachem and R. M. N. Pelloux: Ref. 19, pp. 210–45.

  25. D. A. Meyn and G. Sandoz:Trans. TMS-AIME, 1969, vol. 245, pp. 1253–58.

    CAS  Google Scholar 

  26. R. P. Wei and D. L. Ritter:J. Mater., 1972, vol. 7, no. 2, pp. 240–50.

    CAS  Google Scholar 

  27. R. J. H. Wanhill:Acta Met., 1973, vol. 21, pp. 1253–58.

    Article  CAS  Google Scholar 

  28. H. G. Nelson, D. P. Williams, and J. E. Stein:Met. Trans., 1972, vol. 3, pp. 469–75.

    CAS  Google Scholar 

  29. B. A. Kolachev, A. A. Bukhanova, and V. V. Shevchenko:Izv. Vyssh. Ucheb. Zaved., Tsvet.Met., 1970, vol. 1970, pp. 114–19.

    Google Scholar 

  30. C. J. Beevers, M. R. Warren, and D. V. Edmonds:J. Less Common Metals, 1968, vol. 14, pp. 387–96.

    Article  CAS  Google Scholar 

  31. H. A. Robinson, P. D. Frost, and W. M. Parris:Trans. TMS-AIME, 1958, vol. 212, pp. 464–69.

    CAS  Google Scholar 

  32. J. D. Boyd:Trans. ASM, 1969, vol. 62, pp. 977–88.

    CAS  Google Scholar 

  33. N. E, Paton, B. S. Hickman, and D. H. Leslie:Met. Trans., 1971, vol. 2, pp. 2791–96.

    Article  CAS  Google Scholar 

  34. G. F. Rttinato and W. D. Hanna:Met. Trans., 1972, vol. 3, pp. 2905–09.

    Article  Google Scholar 

  35. T. L. MacKay:Met. Trans., 1971, vol. 2, pp. 2299–2302.

    Article  CAS  Google Scholar 

  36. S. M. Toy and A. Phillips:Corrosion, 1970, vol. 26, pp. 200–07.

    Article  CAS  Google Scholar 

  37. O. J. Huber, J. E. Gates, A. P. Young, M. Pobereskin, and P. D. Frost:J. Metals, 1957, vol. 9, p. 918.

    CAS  Google Scholar 

  38. N. A. Tiner, T. L. MacKay, S. K. Asunmaa, and R. G. Ingersoll:Trans. ASM, 1968, vol. 61, p. 195.

    CAS  Google Scholar 

  39. M. Smialowski:Hydrogen in Steel, pp. 200–68, Pergamon Press, New York, 1962.

    Book  Google Scholar 

  40. V. A. Livanov, B. A. Kolachev, and A. A. Buhanova:The Science Technology and Application of Titanium, R. I. Jaffee and N. E. Promisel, eds., pp. 561–76, Pergamon Press, New York, 1970.

    Chapter  Google Scholar 

  41. A. R. Troiano:Trans. ASM, 1960, vol. 52, pp. 54–80.

    Google Scholar 

  42. H. G. Vaughan and M. E. deMorton:Brit. Welding J., 1957, vol. 36, pp. 40–61.

    Google Scholar 

  43. J. D. Landes and R. P. Wei:Trans. ASME, J. Eng. Mater. Tech., 1973, vol. 95, pp. 2–9.

    Article  CAS  Google Scholar 

  44. C. D. Beachem:Met. Trans., 1972, vol. 3, pp. 437–51.

    CAS  Google Scholar 

  45. A. S. Mikhailov and B. S. Krylov: Proc. Conf. on Titanium and Its Alloys- Publication No. 10, Investigation of Titanium Alloys, I.I. Kornilov, ed., USSR, 1961 (Israel Program for Scientific Translations, Jerusalem, 1966, pp. 151–57).

  46. M. Kh. Shorshorov, G. V. Nazarov, and V. V. Belov: Ref. 45, pp. 303–11.

  47. O. P. Nazimov, B. A. Kolachev, and Yu. V. Gorshkov:Weld. Prod., 1971, vol. 18, pp. 17–19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyn, D.A. Effect of hydrogen on fracture and inert-environment sustained load cracking resistance of α- β titanium alloys. Metall Trans 5, 2405–2414 (1974). https://doi.org/10.1007/BF02644024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644024

Keywords

Navigation