Skip to main content
Log in

Creep behavior of the heusler type structure alloy Ni2AlTi

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A specific method for improving the high temperature creep strength of β-NiAl by a ternary addition giving rise to an additional degree of order is examined. The ternary alloy thus formed has theA 2BC or Heusler type structure, and the present study is devoted to the creep behavior of polycrystalline Ni2AlTi of stoichiometric composition. Possible slip modes are predicted on the basis of the hard sphere model, and quantitative transmission electron microscopy is used to verify these predictions. All intracellular dislocations, and network dislocations have a α0〈110〉 type Burgers vector; α0 is the lattice parameter of a bcc cell of which the large Ni2AlTi unit cell is composed. The creep strength of this alloy is ∼ 3 times that of NiAl in its most creep resistant form, na mely [100] axis single crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. R. Strutt and G. M. Rowe:29th Annual Meeting, Electron Microscope Society of America, 1971, vol. 29, p. 116.

    CAS  Google Scholar 

  2. P. R. Strutt, G. M. Rowe, J. C. Ingram, and Y. H. Choo:Electron Microscopy and Structure of Materials, p. 722, University of California Press, Berkeley, California, 1972.

    Google Scholar 

  3. A. Taylor and R. W. Floyd:J. Inst. Metals, 1952-53, vol. 80, p. 25.

    Google Scholar 

  4. E. P. Lautenschlager, T. Hughes, and J. O. Brittain:Acta Met., 1967, vol. 15, p. 1347.

    Article  CAS  Google Scholar 

  5. M. H. Loretto and R. J. Wasilewski:Phil. Mag., 1972, vol. 23, p. 1311.

    Article  ADS  Google Scholar 

  6. Wen-Shian Tzeng and P. R. Strutt:31st Annual Meeting, Electron Microscope Society of America, 1973, vol. 31, p. 100.

    Google Scholar 

  7. A. K. Head:Austral J. Phys., 1967, vol. 20, p. 557.

    ADS  Google Scholar 

  8. R. J. Wasilewski:Trans. TMS-AIME, 1966, vol. 236, p. 455.

    CAS  Google Scholar 

  9. A. Y. Shingaer:Phys. Metals Metallog., 1963, vol. 15, p. 100.

    Google Scholar 

  10. G. F. Hancock and B. R. McDonnel:Phys. Stat. Solidi(a), 1971, vol. 4, p. 143.

    Article  CAS  ADS  Google Scholar 

  11. Y. H. Choo: M. S. Thesis, University of Connecticut, 1971.

  12. W. J. Tunstall, P. B. Hirsch, and J. Steeds:Phil. Mag., 1964, vol. 9, p. 99.

    Article  ADS  Google Scholar 

  13. A. Howie and M. J. Whelan:Proc. Roy. Soc., 1962, vol. A267, p. 206.

    ADS  Google Scholar 

  14. P. R. Strutt, Wen-Shian Tzeng, and R. S. Polvani:Met. Trans. A, 1976, vol. 7A, pp. 33–40.

    Google Scholar 

  15. D. I. Potter:Mater. Sci Eng., 1969-70, vol. 5, p. 201.

    Google Scholar 

  16. P. R. Strutt and R. A. Dodd:Ordered Alloys, Physical Metallurgy and Structural Applications, p. 475, Clatior’s, Baton Rouge, 1970.

  17. J. P. Hirth and J. Lothe:Theory of Dislocations, p. 513, McGraw-Hill, New York, 1968.

    Google Scholar 

  18. N. J. Zaluzec and H. L. Fraser:Scr. Metal., 1974, vol. 8, p. 1049.

    Article  CAS  Google Scholar 

  19. P. R. Strutt, R. A. Dodd, and G. M. Rowe:Proc. 2nd Int. Conf. on the Strength of Metals and Alloys, p. 1057, Amer. Soc. Met., 1970.

  20. V. K. Lindross and H. M. Miekk-Oja:Phil. Mag., 1968, vol. 17, p. 119.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strutt, P.R., Polvani, R.S. & Ingram, J.C. Creep behavior of the heusler type structure alloy Ni2AlTi. Metall Trans A 7, 23–31 (1976). https://doi.org/10.1007/BF02644035

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644035

Keywords

Navigation