Skip to main content
Log in

Grain Size Effects in Hydrogen-Assisted Cracking

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

There is conflicting evidence in the literature with respect to the effect of grain size on hydrogen embrittlement. Differences may arise because of the degree of segregation in different grain size materials, because of different structures obtained in the effort to produce varying grain sizes, or because of the grain-size dependency of diffusion and growth processes. An extremely dirty heat of 4340 steel with 0.07 S and 0.015 P was investigated so that any tramp element segregation or hydrogen recombination poison effects would be present. Measurements were obtained on cathodically-charged samples with average grain sizes of 20, 50, 90 and 140 μm. In general, tramp element effects were not controlling. For those cases where the grain diameter was significantly larger than the plastic zone, increased grain size improved resistance. This was reflected by a slight increase in threshold stress intensity and an inverse grain-size squared dependence of crack velocity. Although the data are consistent with a pressure tensor hydrogen-assisted migration model, they could also be interpreted in terms of high austenitizing temperatures promoting retained austenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. W. Gerberich:Hydrogen in Metals, I. M. Bernstein and A. W. Thompson, eds., p. 115, American Society for Metals, 1974.

  2. W. W. Gerberich and Y. T. Chen:Scripta Met., 1974, vol. 8, p. 243.

    Article  CAS  Google Scholar 

  3. A. E. Schuetz and W. D. Robertson:Nace Technical Committee Report, 1957, publication 57-17, vol. 13, p. 437.

    Google Scholar 

  4. W. A. Van Der Sluys:Eng. Fract. Mech., 1969, vol. 1, p. 447.

    Article  Google Scholar 

  5. S. Kortovich and E. A. Steigerwald:Eng. Fract. Mech., 1972, vol. 4, p. 637.

    Article  CAS  Google Scholar 

  6. H. H. Johnson, J. G. Morlet, and A. R. Troiano:Trans. TMS-AIME, 1958, vol. 216, p. 528.

    Google Scholar 

  7. G. L. Hanna, A. R. Troiano, and E. A. Steigerwald:Trans. ASM, 1964, vol. 57, p. 658.

    CAS  Google Scholar 

  8. R. Barthand E. A. Steigerwald:Met. Trans., 1970, vol. 1, p. 3451.

    Google Scholar 

  9. E. A. Steigerwald, F. W. Schalle.-, and A. R. Troiano:Trans. TMS-AIME, 1960, vol. 218, p. 832.

    CAS  Google Scholar 

  10. F. Barth, E. A. Steigerwald, and A. R. Troiano:Corrosion, 1969, vol. 25, no. 9. p. 353.

    CAS  Google Scholar 

  11. G. Sandoz:Met. Trans., 1972, vol. 3, p. 1169.

    Article  CAS  Google Scholar 

  12. D. Beachem:Met. Trans., 1972, vol. 3, p. 437.

    Article  CAS  Google Scholar 

  13. St. John and W. W. Gerberich:Met. Trans., 1973, vol. 4, p. 589.

    Article  Google Scholar 

  14. B. F. Brown:Met. Rev., 1968, vol. 13, p. 171.

    CAS  Google Scholar 

  15. B. F. Brown:The Theory of Stress Corrosion Cracking in Alloys, J. Scully, ed., p. 186, W. J. Maney and Son, Leeds, England, 1971.

    Google Scholar 

  16. F. Brown and D. Beachem:Corr. Sci., 1965, vol. 5, p. 745.

    Article  Google Scholar 

  17. W. A. Van Der Sluys:J. Basic Eng., Trans. ASME, Scr. D., 1967, vol. 89, p. 28.

    Google Scholar 

  18. A. J. Stavros and H. W. Paxton:Met. Trans., 1970, vol. 1, p. 3049.

    CAS  Google Scholar 

  19. S. Carter:Corrosion, 1969, vol. 25, no. 10, p. 423.

    CAS  Google Scholar 

  20. R. P. M. Proctor and H. W. Paxton:Trans. ASM, 1962, vol. 62, p. 989.

    Google Scholar 

  21. M.V. Hyatt:Corrosion, 1970, vol. 26, no. 11, p. 487.

    CAS  Google Scholar 

  22. N. Freed and J. M. Krafft:J. Mater., 1966, vol. 1, no. 4, p. 770.

    Google Scholar 

  23. W. E. Wood, E. R. Parker, and V. F. Zackay: “An Investigation of Metallurgi- cal Factors Which Affect the Fracture Toughness of Ultra High Strength Steel”, Report No. LBL-1474, Univ. of Cal., Berkeley, 1973.

  24. A. R. Troiano:Trans. ASM, 1960, vol. 52, p. 54.

    Google Scholar 

  25. W. W. Gerbench, Y. T. Chen, and St. John:Met. Trans. A, 1975, vol. 6A, p. 1485.

    Article  Google Scholar 

  26. B. Hyall and G. Krauss, Jr.:Trans. ASM, 1968, vol. 61, p. 169.

    Google Scholar 

  27. T. J. Koppenaal and E. Gold:Met. Trans., 1972, vol. 3, p. 2965.

    Article  CAS  Google Scholar 

  28. R. T. Ault, K. O. McDowell, P. L. Hendricks, and T. M. S. Ronald:Trans. ASM, 1967, vol. 60, p. 79.

    CAS  Google Scholar 

  29. M. H. Peterson, B. F. Brown, R. L. Newbegin, and R. E. Groover:Corrosion, 1967, vol. 23, p. 1942.

    Google Scholar 

  30. S. Mostovoy, H. R. Smith, R. G. Lingwall, and E. J. Ripling:Eng. Fract. Mech., 1971, vol. 3, p. 291.

    Article  CAS  Google Scholar 

  31. C.S. Carter:Eng. Fract. Mech., 1971, vol. 3, p. 1.

    Article  Google Scholar 

  32. H. L. Dunegan and A. S. Tetelman:Eng. Fract. Mech., 1971, vol. 2, p. 387.

    Article  Google Scholar 

  33. G. E. Kearnsand R. W. Staehle:Scripta Met., 1972, vol. 6, p. 631.

    Article  Google Scholar 

  34. A. M. Sullivan:Eng. Fract. Mech., 1974, vol. 4, p. 65.

    Article  Google Scholar 

  35. W. E. Wood: Oregon Post Graduate Center, private communication, 1975.

  36. K. Yoshino and C. J. McMahon, Jr.:Met. Trans., 1974, vol. 5, p. 363.

    Article  CAS  Google Scholar 

  37. P. Paris and G. Sih:Amer. Soc. Test. Mater. Special Tech. Pub. 381, 1965, p. 30.

    Google Scholar 

  38. B. B. Rath and I. M. Bernstein:Met. Trans., 1971, vol. 2, p. 2845.

    Article  CAS  Google Scholar 

  39. R. A. McCoy and W. W. Gerberich:Met. Trans., 1972, vol. 4, p. 539.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student, Department of Chemical Engineering and Materials Science, University of Minnesota.

The present paper is based on a portion of the thesis submitted by J. F. Lessar in partial fulfillment of the requirement for the M.S. degree at the University of Minnesota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lessar, J.F., Gerberich, W.W. Grain Size Effects in Hydrogen-Assisted Cracking. Metall Trans A 7, 953–960 (1976). https://doi.org/10.1007/BF02644060

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644060

Keywords

Navigation