Skip to main content
Log in

The recrystallization of heavily-drawn Doped Tungsten Wire

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The recrystallization of 0.18 mm doped tungsten wire, swaged and drawn to a true strain of 7.7 at temperatures of <0.47T m, was investigated by light microscopy and by transmission electron microscopy. The as-drawn structure of the wire consisted of greatly elongated, ribbon-shaped grains which had a pronounced «110” fiber texture. These contained well-developed, elongated cells with few transverse boundaries. The onset of sub-boundary and grain boundary migration, together with the formation of potassium-containing bubbles in rows oriented parallel to the drawing direction, was observed after annealing at 800°C for 1 h. At higher temperatures, the spacing and the misorientation of the longitudinal subboundaries increased, and new transverse subboundaries were formed. Both subboundary and grain boundary migration were strongly inhibited by the bubble rows, as well as by the uniformity of the deformation and the well-developed texture. At 2100°C these mechanisms produced a fine-grained, partially recrystallized structure (1.2 μm average longitudinal boundary spacing) without change in the deformation texture. At 2150°C and above, large grains of high aspect ratio, which also retained the «110» drawing texture, were formed by exaggerated grain growth. This process was initiated by a very small population of grains which had acquired the necessary size advantage during the growth of the fine-grained structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. D. Rieck:High Temp.-High Pressures, 1971, vol. 3, pp. 419–24.

    CAS  Google Scholar 

  2. D. M. Moon and R. C. Koo:Met. Trans., 1971, vol. 2, pp. 2115–22.

    Article  CAS  Google Scholar 

  3. H. Warlimont, G. Necker, and H. Schultz:Z. Metallk., 1975, vol. 66, pp. 279- 86.

    CAS  Google Scholar 

  4. D. J. Jones:Metallurgist and Mat. Tech., 1973, vol. 5, pp. 503–12.

    Google Scholar 

  5. H. G. Sell, D. F. Stein, R. Stickler, A. Joshi, and E. Berkey:J. Inst, Metals, 1972, vol. 100, pp. 272–88.

    Google Scholar 

  6. D. B. Snow:Met. Trans., 1974, vol. 5, pp. 2375–81.

    Article  CAS  Google Scholar 

  7. J. D. Embury, A. S. Keh, and R. M. Fisher:Trans. TMS-AIME, 1966, vol. 236, pp. 1252–60.

    CAS  Google Scholar 

  8. G. Langford and M. Cohen:ASM Trans. Quart., 1969, vol. 62, pp. 623–38.

    CAS  Google Scholar 

  9. S. Leber:Trans. TMS-AIME, 1965, vol. 233, pp. 953–59.

    CAS  Google Scholar 

  10. S. Nakajima and H. Okasaki:Trans. TMS-AIME, 1967, vol. 239, pp. 1060–65.

    CAS  Google Scholar 

  11. E. S. Meieran and D. A. Thomas:Trans. TMS-AIME, 1965, vol. 233, pp. 937- 43.

    CAS  Google Scholar 

  12. W. F. Hosford, Jr.:Trans. TMS-AIME, 1964, vol. 230, pp. 12–15.

    CAS  Google Scholar 

  13. D. G. Brandon, B. Ralph, S. Ranganathan, and M. S. Wald:Acta Met., 1964, vol. 12, pp. 813–21.

    Article  Google Scholar 

  14. R. J. Bayuzick and R. S. Goodrich:Surface Sci., 1970, vol. 23, pp. 225–39.

    Article  CAS  Google Scholar 

  15. B. Loberg and H. Norden:Phil. Mag., 1971, vol. 24, pp. 897–909.

    Article  CAS  Google Scholar 

  16. M. Rühle and I. Keller:Proc. 8th Plansee Seminar, F. Benesovsky, ed., vol. I, p. D2, Metallwerk Plansee AG., Reutte, 1974.

    Google Scholar 

  17. A. Berghezan and A. Fourdeux:Planseeber. Pulvermet., 1974, vol. 22. pp. 264- 84.

    CAS  Google Scholar 

  18. D. B. Snow and T. E. Dunham:Grain Boundaries in Engineering Materials, Proc. Fourth Bolton Landing Conf., J. L. Walter, J. H. Westbrook, and D. A. Woodford, eds., p. 77, Claitor’s Publishing Division, Baton Rouge, 1975.

    Google Scholar 

  19. F. A. Nichols and W. W. Muffins:Trans. TMS-AIME, 1965, vol. 233, pp. 1840–48.

    CAS  Google Scholar 

  20. I. L. Dillamore:Recrystallization of Metallic Materials, F. Haessner, ed., p. 289, Riederer Verlag, Stuttgart, 1971.

    Google Scholar 

  21. G. L. Davis:Metallurgica, 1958, October, pp. 177–84.

    Google Scholar 

  22. O. Horacsek:Z. Metallk., 1972, vol. 63, pp. 269–73.

    CAS  Google Scholar 

  23. J. L. Walter:Trans. TMS-AIME, 1967, vol. 239, pp. 272–86.

    CAS  Google Scholar 

  24. A. Pebler, G. G. Sweeney, and P. M. Castle:Met. Trans. A, 1975, vol. 6, pp. 991–96.

    Article  Google Scholar 

  25. E. Richards and T. W. Watson:J. Iron Steel Inst. London, 1969, vol. 207, pp. 582–84.

    CAS  Google Scholar 

  26. K. Detert:Recrystallization of Metallic Materials, F. Haessner, ed., p. 109, Riederer Verlag, Stuttgart, 1971.

    Google Scholar 

  27. G. Langford and M. Cohen:Met. Trans. A., 1975, vol. 6, pp. 901–10.

    Article  Google Scholar 

  28. J. E. Smith and I. L. Dillamore:Metal Sci. J., 1970, vol. 4, pp. 161–67.

    Article  CAS  Google Scholar 

  29. R. W. Cahn:Recrystallization of Metallic Materials, F. Haessner, ed., p. 43, Riederer Verlag, Stuttgart, 1971.

    Google Scholar 

  30. R. D. Doherty:Metal Sci., 1974, vol. 8, pp. 132–42.

    Article  CAS  Google Scholar 

  31. A. J. Opinsky:Trans. TMS-AIME, 1967, vol. 239, pp. 919–20.

    CAS  Google Scholar 

  32. A. J. Opinsky, J. L. Bartos, and H. A. Fisch:Trans. TMS-AIME, 1969, vol. 245, pp. 233–35.

    CAS  Google Scholar 

  33. J. L. Brimhall, M. J. Klein, and R. A. Huggins:Acta Met., 1966, vol. 14, pp. 459–66.

    Article  CAS  Google Scholar 

  34. U. Köster:Metal Sci., 1974, vol. 8, pp. 151–60.

    Article  Google Scholar 

  35. J. Brett and S. Friedman:Met. Trans., 1972, vol. 3, pp. 769–78.

    Article  CAS  Google Scholar 

  36. H. G. Sell and G. W. King:Res./Develop., July 1972, vol. 23, pp. 18–21.

    CAS  Google Scholar 

  37. D. Jeannotte and J. M. Galligan:Acta Met., 1970, vol. 18, pp. 71–79.

    Article  CAS  Google Scholar 

  38. L. A. Neimark and R. A. Swalin:Trans. TMS-AIME, 1960, vol. 218, pp. 82- 87.

    CAS  Google Scholar 

  39. M. J. Attardo, J. M. Galligan, and J. G. Y. Chow:Phys. Rev. Lett., 1967, vol. 19, pp. 73–74.

    Article  CAS  Google Scholar 

  40. H. Schultz:Mater. Sci. Eng., 1968–69, vol. 3, pp. 189–219.

    Article  CAS  Google Scholar 

  41. R. E. Pawel and T. S. Lundy:Acta Met., 1969, vol. 17, pp. 979–88.

    Article  CAS  Google Scholar 

  42. R. E. Armstrong, W. V. Green, O. D. Sherby, and E. G. Zukas:Acta Met., 1973, vol. 21, pp. 1319–26.

    Article  CAS  Google Scholar 

  43. K. C. Thompson-Russell:Planseeber. Pulvermet., 1974, vol. 22, pp. 155–64.

    CAS  Google Scholar 

  44. R. A. Swalin and A. H. Geisler:J. Inst. Metals, 1957–58, vol. 85, pp. 129–34.

    Google Scholar 

  45. F. Haessner:Recrystallization of Metallic Materials, F. Haessner, ed., p. 5, Riederer Verlag, Stuttgart, 1971.

    Google Scholar 

  46. M. Hillert:Acta Met., 1965, vol. 13, pp. 227–38.

    Article  CAS  Google Scholar 

  47. W. Dawson:Met. Trans., 1972, vol. 3, pp. 3103–07.

    Article  CAS  Google Scholar 

  48. E. E. Gruber:J. Appl. Phys., 1967, vol. 38, pp. 243–50.

    Article  CAS  Google Scholar 

  49. D. B. Snow. General Electric Co., Lamp Business Div. 7232, 21800 Tungsten Rd., Cleveland, Ohio 44117, unpublished research, 1973.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snow, D.B. The recrystallization of heavily-drawn Doped Tungsten Wire. Metall Trans A 7, 783–794 (1976). https://doi.org/10.1007/BF02644074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644074

Keywords

Navigation