Skip to main content
Log in

Stress-Induced Shape Changes and Shape Memory in the R and Martensite Transformations in Equiatomic NiTi

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Equiatomic NiTi wire was cooled below TR, the critical temperature for theB R transition, and then stressed in situ in a custom-built X-ray diffraction stage to study the shape memory phenomenon. Tensile stressing the specimen causes a shifting of X-ray intensity from lR to -lR. This is rationalized in terms of domain growth under external stress, resulting in a preferred arrangement of domains in theR -phase, which dimensionally accommodates the applied force. A recoverable strain of ~1.37 pet is accommodated by theR-phase, 0.56 pct of which is recovered immediately after the stress is removed and the remaining 0.81 pct on heating to above TR. This amount of strain is rationalized in terms of the difference in d-spacings and multiplicity factors between {111}R and {-111}R. The springback is primarily associated with the reversal of domain alignment while the shape memory on heating is primarily due to the return of the phase to cubic symmetry. Straining beyond 1.37 pct induces stress-assisted marteniste formation up to 5.47 pct Δl/l, the maximum strain achieved in this series of experiments. This results in a second stage of shape recovery on heating through theA, — Af temperature range. Only 15 vol pct of stress-assisted martensite accounts for nearly all of the additional ~4 pct change in Δl/l. This emphasizes the important role of the martensitic transformation in achieving large changes in macroscopic length in the shape memory phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Simon, R. Kaplow, E. Salzman, and D. Freiman:Radiology, 1977, vol. 125, no. l,p. 89.

    Google Scholar 

  2. D. P. Dautovich and G. R. Purdy:Can. Metall. Q., 1965, vol. 4, p. 129.

    CAS  Google Scholar 

  3. M. B. Salamon, M. Meichle, C. M. Wayman, C. M. Hwang and S. M. Shapiro:Int. Conf. on Modulated Structures, Kona. Hawaii, AIP Conf. Proc. No. 53, p. 223, American Institute of Physics, New York, 1979.

    Google Scholar 

  4. K. Otsuka, T. Sawamura, and K. Shimizu:Phys. Status Solidi (a), 1971, vol. 5, p. 457.

    Article  CAS  Google Scholar 

  5. A. Nagasawa:J. Phys. Soc: Jpn., 1971, vol. 31, p. 136.

    Article  CAS  Google Scholar 

  6. M. Matsumoto and T. Honma:New Aspects of Martensitic Transformation, p. 199, Kobe, Japan Institute of Metals, 1976.

    Google Scholar 

  7. V. N. Khachin, V. E. Gyunter, L. A. Monasevich, and Yu. I. Paskal:Sov. Phys. Dokl., 1977, vol. 22(6), pp. 336–37.

    Google Scholar 

  8. L. A. Monasevich, V. E. Gunter, Yu. I. Pascal, and V. N. Khachin:Proceedings of International Conf. on Martensitic Transformation (ICOMA T), Kiev, 1977, pp. 165-68 (Russian).

  9. V. N. Khachin, V. E. Gunter, V. P. Sivokha, and A. S. Savvinov:Proceedings of International Conf. on Martensitic Transformation (ICOMAT), p. 474, M.I.T., Cambridge, 1979.

    Google Scholar 

  10. V. N. Khachin, Yu. I. Pascal, V. E. Gunter, A. A. Monasevich, and V. P. Sivokha:Phys. Met. Metallogr., 1978, vol. 46, no. 3, pp. 49–57.

    Google Scholar 

  11. H. C. Ling and R. Kaplow:Metall. Trans. A, 1980, vol. 11A, p. 77.

    CAS  Google Scholar 

  12. G. D. Sandrock, A. J. Perkins, and R. F. Hehemann:Metall. Trans, 1971, vol. 2, p. 2769.

    CAS  Google Scholar 

  13. K. H. Echelmeyer:Scr. Metall., 1976, vol. 10, p. 667.

    Article  Google Scholar 

  14. H. Warliamont and L. Delaey:Prog. Mater. Sci., vol. 18, p. 113, Pergamon Press, 1974.

    Google Scholar 

  15. R. J. Wasilewski:Metall. Trans., 1971, vol. 2, p. 2973.

    CAS  Google Scholar 

  16. A. Nagasawa, K. Enami, Y. Ishino, Y. Abe, and S. Nenno:Scr. Metall., 1974, vol. 8, p. 1055.

    Article  CAS  Google Scholar 

  17. J. Perkins:Scr. Metall., 1974, vol. 8, p. 1469.

    Article  CAS  Google Scholar 

  18. R. J. Wasilewski:Scr. Metall., 1975, vol. 9, p. 417.

    Article  CAS  Google Scholar 

  19. H. A. Mohamed and J. Washburn:J. Mater. Sci, 1977, vol. 12, p. 469.

    Article  CAS  Google Scholar 

  20. S. P. Gupta:Mater. Sci. Eng., 1973, vol. 11, p. 283.

    Article  CAS  Google Scholar 

  21. G. M. Michal: Ph.D. Thesis, Stanford University, November, 1979.

  22. H. C. Ling and R. Kaplow:Rev. Sci. Instrum., 1980, vol. 51, no. 10, p. 41.

    Article  Google Scholar 

  23. H. C. Ling and R. Kaplow:Mater. Sci. Eng., 1981, vol. 48, p. 241.

    Article  CAS  Google Scholar 

  24. H. C. Ling and R. Kaplow:Mater. Sci. Eng, in press.

  25. H. Iwasaki and Y. Watanabe:Int. Conf. on Modulated Structures, Kona, Hawaii, AIP Conf. Proc. No. 53, p. 247, American Institute of Physics, New York, 1979.

    Google Scholar 

  26. F. E. Wang, W. J. Buehler, and S. J. Pickart:J. Appl. Phys, 1965, vol. 36, p. 3232.

    Article  CAS  Google Scholar 

  27. F. E. Wang, B. F. DeSavage, W. J. Buehler, and W. R. Hosler:J. Appl. Phys., 1968, vol. 39, p. 2166.

    Article  CAS  Google Scholar 

  28. F. E. Wang, S. J. Pickart, and H. A. Alperin:J. Appl. Phys, 1972, vol. 43, p. 97.

    Article  CAS  Google Scholar 

  29. G. D. Sandrock:Metall. Trans., 1974, vol. 5, p. 299.

    CAS  Google Scholar 

  30. F. J. DiSalvo, Jr. and T. M. Rice:Phys. Today, 1979, vol. 32, p. 32.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ling, H.C., Roy, K. Stress-Induced Shape Changes and Shape Memory in the R and Martensite Transformations in Equiatomic NiTi. Metall Trans A 12, 2101–2111 (1981). https://doi.org/10.1007/BF02644180

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644180

Keywords

Navigation