Skip to main content
Log in

The mechanical stability of austenite in maraging steels

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Two different types of retained austenite were encountered in maraging steels: one obtained by the usual overaging/reversion process, and was found to be mechanically unstable at room temperature; the other, obtained in a sequence of isothermal heat treatments leading to the formation of microsegregational content zones of molybdenum and cobalt in the lath-martensite, and was found to be mechanically stable at room temperature (RT). In the unstable case the austenite transformed to martensite upon cold working at RT. In the stable case, as was shown by careful Mössbauer-effect spectroscopy and X-ray diffraction studies, the amount of retained austenite was not affected by the cold-working at RT, whereas some amount of the martensite was transformed into a ferromagnetic-type of austenite. Complementary studies by electron diffraction have shown that both Kordjumov-Sachs and Nishiyama crystallographic orientation relationships may exist between austenite and martensite, depending on the local molybdenum and cobalt segregational contents in the lath martensite. The appearance of ferromagnetic austenite, as well as other segregational effects observed by the Mössbauer-effect spectroscopy are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.D. Antolovich, A. Sexena, and G. R. Chanai:Metall. Trans., 1974, vol. 5, pp. 623–32.

    CAS  Google Scholar 

  2. S. Jin, D. Huang, and J.Q. Morris, Jr.:Metall. Trans. A, 1976, vol. 7A, pp. 637–45.

    CAS  Google Scholar 

  3. C. Servant and G. Cizeron:Mem. Sci. Rev. Met., 1969, vol. 66, pp. 531–40.

    CAS  Google Scholar 

  4. L. Priester:Rev. Met., 1970, vol. 76, pp. 707–16.

    Google Scholar 

  5. A. Magnee, J. M. Drapier, J. Dumont, D. Coutsouradis, and L. Habraken: “Cobalt-Containing High-Strength Steels”, Centre d’information du Cobalt, Brussels, 1974, pp. 60–61.

    Google Scholar 

  6. (a) H. Marcus, L. H. Schwartz, and M.E. Fine:Trans. ASM, 1966, vol. 59, pp. 468–78 (see Fig. 5). (b) J.M. Genin, G. La Caer, P. Maitrepierre, and B.J. Thomas: Scripta Met., 1974, vol. 8, pp. 15-22.

    CAS  Google Scholar 

  7. S. Nadiv and G. Gurewitz: Dept. of Materials Engineering, Technion, Haifa, unpublished results, 1977.

  8. G.K. Wertheim, V. Jaccarino, U.H. Wernick, and D.N. E. Buchanan:Phys. Rev. Letters, 1964, vol. 12, pp. 24–27.

    Article  Google Scholar 

  9. I. Vincze and I. A. Campbell:J. Phys. F.: Metal Phys., 1973, vol. 3, pp. 647–63.

    Article  CAS  Google Scholar 

  10. M. J. Dickson:J. Appl. Cryst., 1969, vol. 2, pp. 176–80.

    Article  CAS  Google Scholar 

  11. International Tables for X-Ray Crystallography, The Kynoch Press, Birmingham, 1962, vol. 3, p. 285; 1974, vol. 4, pp. 72, 149.

  12. N. Atzmon: D. Sc. Thesis, Technion-Israel Inst. Tech., Haifa (in Hebrew, English Summary), 1977.

  13. K. W. Andrews, D. J. Dyson, and S.R. Keown:Interpretation of Electron Diffraction Patterns, Hilger Ltd., London, 1971, pp. 165–71.

    Google Scholar 

  14. J. P. Thevenin, G. Cizeron, and P. Lacombe:Mem. Sci. Rev. Met., 1971, vol. 68, pp. 75–80.

    CAS  Google Scholar 

  15. J.M. Chilton, C.J. Barton, and G. R. Speich:Jnl. Iron & Steel Inst., 1970, vol. 204, pp. 184–93.

    Google Scholar 

  16. P.M. Kelly:Acta Met., 1965, vol. 13, pp. 635–46.

    Article  CAS  Google Scholar 

  17. W. S. Owen, F. J. Schoen, and G.R. Srinivasan: inPhase-Transformation, ASM, Metals Park, OH, 1968, chap. 4, p. 172.

    Google Scholar 

  18. G. Galeczki and A.A. Hirsch:Jnl. Magn. & Magn. Mat., 1978, vol. 7, pp. 110–12.

    Google Scholar 

  19. V. I. Goldanski and E. F. Makarov: inChemical Applications of Mössbauer Spectroscopy, Academic Press, New York, NY, 1968, chap. 1, p. 77.

    Google Scholar 

  20. C. Zener:Elasticity and Anelasticity of Metals, University of Chicago Press, 1948, p. 16.

  21. A. Markfeld and A. Rosen:Materials Sci. & Eng., 1980, vol. 46, pp. 151–57.

    Article  CAS  Google Scholar 

  22. H. Mathias, Y. Katz, and S. Nadiv: “Hydrogenation/gas-release effects in austenitic steels: quantitative studies”, Miami International Symposium on Metal-Hydrogen Systems, April 1981, T. Nejat-Veziroglu, ed., Pergamon Press, 1982, pp. 225-49.

  23. C. E. Johnson, M. S. Ridout, and T. E. Cranshaw:Proc. Phys. Soc, 1963, vol. 81, pp. 1079–90 (see Fig. 3).

    Article  CAS  Google Scholar 

  24. T. E. Cranshaw:J. Phys. F.: Metal Phys., 1972, vol. 2, pp. 615–24.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katz, Y., Mathias, H. & Nadiv, S. The mechanical stability of austenite in maraging steels. Metall Trans A 14, 801–808 (1983). https://doi.org/10.1007/BF02644283

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644283

Keywords

Navigation