Skip to main content
Log in

Kinetics of chromium oxide reduction from a basic steelmaking slag by silicon dissolved in liquid iron

  • Published:
Metallurgical transactions Aims and scope Submit manuscript

Abstract

The reduction of chromium oxide from a basic steelmaking slag (45 wt pct CaO, 35 wt pct SiO2, 10 wt pct MgO, 10 wt pct A12O3) by silicon dissolved in liquid iron at steelmaking temperatures was studied to determine the rate-limiting steps. The reduction is described by the reactions: (Cr2O3) + Si = (SiO2) + (CrO) + Cr [1] and 2 (CrO) +Si = (SiO2) + 2 Cr [2] The experiments were carried out under an argon atmosphere in a vertical resistance-heated tube furnace. The slag and metal phases were held in zirconia crucibles. The course of the reactions was followed by periodically sampling the slag phase and analyzing for total chromium, divalent chromium, and iron. Results obtained by varying stirring rate, temperature, and composition defined the rate-limiting mechanism for each reaction. The rate of reduction of trivalent chromium (reaction [1] above) increases with moderate increases in stirring of the slag, and increases markedly with increases in temperature. The effects of changes in composition identified the rate-limiting step for Cr+3 reduction as diffusion of Cr+3 from the bulk slag to the slag-metal interface. The rate of reduction of divalent chromium does not vary with changes in stirring of the slag, but increases in temperature markedly increase the reaction rate. Thus, this reaction is limited by the rate of an interfacial chemical reaction. The reduction of divalent chromium is linearly dependent on concentration of divalent chromium, but is independent of silicon content of the metal phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. W. McCoy and W. O. Philbrook:The Physical Chemistry of Sleelmaking, pp. 93–98, John WUey and Sons, New York, 1958.

    Google Scholar 

  2. M. G. Frohberg, D. Papamantellos, and E. Hanert:Arch. Eisenhuettenw., 1969, vol. 40, no. l, pp. 15–17.

    CAS  Google Scholar 

  3. W. Oelsen, H. Keller, and H. G. Schubert:Arch. Eisenhuettenw., 1970, vol. 41, no. 4, p. 391.

    CAS  Google Scholar 

  4. M. Frohberg, K. Richter:Arch. Eisenhuettenw., 1968, vol. 39. no. 11, pp. 799–802.

    CAS  Google Scholar 

  5. C. Wagner:The Physical Chemistry of Steelmaking, pp. 237–51, John Wiley and Sons, New York, 1958.

    Google Scholar 

  6. J. W. Robison, Jr.: Ph.D. Dissertation, Rackham Graduate School, The Uni- versity of Michigan, 1973.

  7. F. P. Calderon, N. Sano, and Y. Matsushita:Met. Trans., 1971, vol. 2, pp. 3325–32.

    Article  CAS  Google Scholar 

  8. Y. Kawai and K. Mori:J. Iron Steel Inst., Japan 1972, vol. 58, no. 7, pp. 932–53.

    Article  CAS  Google Scholar 

  9. M. Paschke and A. Hauptmann:Arch. Eisenhuettenw., 1935, vol. 9, p. 305.

    Google Scholar 

  10. D. W. Morgan and J. A. Kitchener:Trans. Faraday Soc., 1954, vol. 50, p. 51.

    Article  CAS  Google Scholar 

  11. E. Grace and G. Derge:Trans. TMS-AIME, 1958, vol. 212, pp. 33–37.

    Google Scholar 

  12. T. Saito, Y. Kawai, K. Maruya, and M. Maki:Physical Chemistry of Process Metallurgy, vol. 1, G. R. St. Pierre, ed., Interscience Publishers, New York, 1961, pp. 523–33.

    Google Scholar 

  13. L. Yang, M. T. Simad, and G. Derge:Trans. AIME, 1956, vol. 206, pp. 1577- 80.

    Google Scholar 

  14. A. C. Riddiford:J. Phys. Chem., 1956, vol. 56, p. 745.

    Article  Google Scholar 

  15. P. J. Koros and T. B. King: Trans. TMS-AIME, 1962. vol. 224. pp. 299–306.

    CAS  Google Scholar 

  16. H. Towers and J. Chipman:Trans. AIME, 1957, vol. 209, pp. 769–73.

    Google Scholar 

  17. H. Towers, M. Paris, and J. Chipman:Trans. AIME, 1953, vol. 197, pp. 1455–58.

    Google Scholar 

  18. A. E. Martin and G. Derge:Trans. AME, 1943, vol. 154, p. 104.

    Google Scholar 

  19. N. McCallum and L. R. Barrett:Trans. Brit. Ceram. Soc., 1952, vol. 51, p. 523.

    CAS  Google Scholar 

  20. T. Saito and K. Maruya:Sci. Repts. Res. Inst. Tohoku-Univ., 1958, vol. 10, p. 259.

    CAS  Google Scholar 

  21. R. F. Johnson:Metals J., Univ. Strathclyde, Glasgow, Scotland, June 1970, no. 20, pp. 33–37

    Google Scholar 

  22. J. Henderson, L. Yang, and G. Derge:Trans. TMS-AIME, 1961, vol. 221, pp. 56–60.

    CAS  Google Scholar 

  23. T. Saito and Y. Kawai:Sci. Rept. Res. Inst. Tohoku Univ., 1953, vol. 45, pp. 460–68.

    Google Scholar 

  24. J. I. Mushikin and O. A. Yesin:Doklad. Akad. Nauk. SSSR, 1961 vol. 137, no. 2, p. 388.

    Google Scholar 

  25. J. S. Machin and T. B. Yee:J. Amer. Cer. Soc., 1948, vol. 31, pp. 200–204.

    Article  CAS  Google Scholar 

  26. P. Kozakevitch:Physical Chemistry of Process Metallurgy, 1961, Interscience Publishers, New York.

    Google Scholar 

  27. J. S. Machin and D. L. Hanna:J. Amer. Cer. Soc., 1945, vol. 28, pp. 310–16.

    Article  CAS  Google Scholar 

  28. J. S. Machin, T. B. Yee, and D. L. Hanna:J. Amer. Cer. Soc., 1952, vol. 35, pp. 322–25.

    Article  CAS  Google Scholar 

  29. E. T. Turkdogan and P. M. Bills:Amer. Cer. Soc. Bull., 1960, vol. 39, pp. 682–87.

    CAS  Google Scholar 

  30. J. O'M. Bockris and D. C. Lowe:Proc. Royal Soc., 1954, vol. A226, pp. 423–35.

    Google Scholar 

  31. P. Kozakevitch: Rev. Met., 1954, vol. 51 pp. 569–87.

    Article  CAS  Google Scholar 

  32. P. Kozakevitch:Rev. Met., 1950, vol. 47, pp. 201–210.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robison, J.W., Pehlke, R.D. Kinetics of chromium oxide reduction from a basic steelmaking slag by silicon dissolved in liquid iron. Metall Trans 5, 1041–1051 (1974). https://doi.org/10.1007/BF02644316

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644316

Keywords

Navigation